Abstract:Counterspeech has been popular as an effective approach to counter online hate speech, leading to increasing research interest in automated counterspeech generation using language models. However, this field lacks standardised evaluation protocols and robust automated evaluation metrics that align with human judgement. Current automatic evaluation methods, primarily based on similarity metrics, do not effectively capture the complex and independent attributes of counterspeech quality, such as contextual relevance, aggressiveness, or argumentative coherence. This has led to an increased dependency on labor-intensive human evaluations to assess automated counter-speech generation methods. To address these challenges, we introduce CSEval, a novel dataset and framework for evaluating counterspeech quality across four dimensions: contextual-relevance, aggressiveness, argument-coherence, and suitableness. Furthermore, we propose Auto-Calibrated COT for Counterspeech Evaluation (ACE), a prompt-based method with auto-calibrated chain-of-thoughts (CoT) for scoring counterspeech using large language models. Our experiments show that ACE outperforms traditional metrics like ROUGE, METEOR, and BertScore in correlating with human judgement, indicating a significant advancement in automated counterspeech evaluation.
Abstract:Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. Addressing hate speech effectively involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These implicit expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. CoARL's first two phases involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and non-toxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of 3 points in intent-conformity and 4 points in argument-quality metrics. Extensive human evaluation supports CoARL's efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.