Abstract:The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 116 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.
Abstract:In this paper, we introduce a data-compilation ensemble, primarily intended to serve as a resource for researchers in the field of dereverberation, particularly for data-driven approaches. It comprises speech and song samples, together with acoustic guitar sounds, with original annotations pertinent to emotion recognition and Music Information Retrieval (MIR). Moreover, it includes a selection of impulse response (IR) samples with varying Reverberation Time (RT) values, providing a wide range of conditions for evaluation. This data-compilation can be used together with provided Python scripts, for generating auralized data ensembles in different sizes: tiny, small, medium and large. Additionally, the provided metadata annotations also allow for further analysis and investigation of the performance of dereverberation algorithms under different conditions. All data is licensed under Creative Commons Attribution 4.0 International License.