Abstract:Nonconvex optimization is central to modern machine learning, but the general framework of nonconvex optimization yields weak convergence guarantees that are too pessimistic compared to practice. On the other hand, while convexity enables efficient optimization, it is of limited applicability to many practical problems. To bridge this gap and better understand the practical success of optimization algorithms in nonconvex settings, we introduce a novel unified parametric assumption. Our assumption is general enough to encompass a broad class of nonconvex functions while also being specific enough to enable the derivation of a unified convergence theorem for gradient-based methods. Notably, by tuning the parameters of our assumption, we demonstrate its versatility in recovering several existing function classes as special cases and in identifying functions amenable to efficient optimization. We derive our convergence theorem for both deterministic and stochastic optimization, and conduct experiments to verify that our assumption can hold practically over optimization trajectories.
Abstract:We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems. Despite their popularity and efficiency in training deep neural networks, traditional analyses of error feedback algorithms rely on the smoothness assumption that does not capture the properties of objective functions in these problems. Rather, these problems have recently been shown to satisfy generalized smoothness assumptions, and the theoretical understanding of error feedback algorithms under these assumptions remains largely unexplored. Moreover, to the best of our knowledge, all existing analyses under generalized smoothness either i) focus on single-node settings or ii) make unrealistically strong assumptions for distributed settings, such as requiring data heterogeneity, and almost surely bounded stochastic gradient noise variance. In this paper, we propose distributed error feedback algorithms that utilize normalization to achieve the $O(1/\sqrt{K})$ convergence rate for nonconvex problems under generalized smoothness. Our analyses apply for distributed settings without data heterogeneity conditions, and enable stepsize tuning that is independent of problem parameters. Additionally, we provide strong convergence guarantees of normalized error feedback algorithms for stochastic settings. Finally, we show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks, including the minimization of polynomial functions, logistic regression, and ResNet-20 training.