for the LHCb Simulation Project
Abstract:Discovering new superionic materials is essential for advancing solid-state batteries, which offer improved energy density and safety compared to the traditional lithium-ion batteries with liquid electrolytes. Conventional computational methods for identifying such materials are resource-intensive and not easily scalable. Recently, universal interatomic potential models have been developed using equivariant graph neural networks. These models are trained on extensive datasets of first-principles force and energy calculations. One can achieve significant computational advantages by leveraging them as the foundation for traditional methods of assessing the ionic conductivity, such as molecular dynamics or nudged elastic band techniques. However, the generalization error from model inference on diverse atomic structures arising in such calculations can compromise the reliability of the results. In this work, we propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential. Our method incorporates a set of heuristic structure descriptors that effectively employ the rich knowledge of the underlying model while requiring minimal generalization capabilities. Using our descriptors, we rank lithium-containing materials in the Materials Project database according to their expected ionic conductivity. Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations. Notably, our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
Abstract:Detailed detector simulation is the major consumer of CPU resources at LHCb, having used more than 90% of the total computing budget during Run 2 of the Large Hadron Collider at CERN. As data is collected by the upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated data samples are necessary, and will far exceed the pledged resources of the experiment, even with existing fast simulation options. An evolution of technologies and techniques to produce simulated samples is mandatory to meet the upcoming needs of analysis to interpret signal versus background and measure efficiencies. In this context, we propose Lamarr, a Gaudi-based framework designed to offer the fastest solution for the simulation of the LHCb detector. Lamarr consists of a pipeline of modules parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment. Most of the parameterizations are made of Deep Generative Models and Gradient Boosted Decision Trees trained on simulated samples or alternatively, where possible, on real data. Embedding Lamarr in the general LHCb Gauss Simulation framework allows combining its execution with any of the available generators in a seamless way. Lamarr has been validated by comparing key reconstructed quantities with Detailed Simulation. Good agreement of the simulated distributions is obtained with two-order-of-magnitude speed-up of the simulation phase.
Abstract:The increasing luminosities of future data taking at Large Hadron Collider and next generation collider experiments require an unprecedented amount of simulated events to be produced. Such large scale productions demand a significant amount of valuable computing resources. This brings a demand to use new approaches to event generation and simulation of detector responses. In this paper, we discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events. We emphasize main pitfalls in the application of GANs and study the systematic effects in detail. The presented results are based on the Geant4 simulation of the LHCb Cherenkov detector.
Abstract:The increasing luminosities of future Large Hadron Collider runs and next generation of collider experiments will require an unprecedented amount of simulated events to be produced. Such large scale productions are extremely demanding in terms of computing resources. Thus new approaches to event generation and simulation of detector responses are needed. In LHCb, the accurate simulation of Cherenkov detectors takes a sizeable fraction of CPU time. An alternative approach is described here, when one generates high-level reconstructed observables using a generative neural network to bypass low level details. This network is trained to reproduce the particle species likelihood function values based on the track kinematic parameters and detector occupancy. The fast simulation is trained using real data samples collected by LHCb during run 2. We demonstrate that this approach provides high-fidelity results.