Abstract:This paper presents CodeRefine, a novel framework for automatically transforming research paper methodologies into functional code using Large Language Models (LLMs). Our multi-step approach first extracts and summarizes key text chunks from papers, analyzes their code relevance, and creates a knowledge graph using a predefined ontology. Code is then generated from this structured representation and enhanced through a proposed retrospective retrieval-augmented generation approach. CodeRefine addresses the challenge of bridging theoretical research and practical implementation, offering a more accurate alternative to LLM zero-shot prompting. Evaluations on diverse scientific papers demonstrate CodeRefine's ability to improve code implementation from the paper, potentially accelerating the adoption of cutting-edge algorithms in real-world applications.
Abstract:In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.