for the LHCb Simulation Project
Abstract:Detailed detector simulation is the major consumer of CPU resources at LHCb, having used more than 90% of the total computing budget during Run 2 of the Large Hadron Collider at CERN. As data is collected by the upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated data samples are necessary, and will far exceed the pledged resources of the experiment, even with existing fast simulation options. An evolution of technologies and techniques to produce simulated samples is mandatory to meet the upcoming needs of analysis to interpret signal versus background and measure efficiencies. In this context, we propose Lamarr, a Gaudi-based framework designed to offer the fastest solution for the simulation of the LHCb detector. Lamarr consists of a pipeline of modules parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment. Most of the parameterizations are made of Deep Generative Models and Gradient Boosted Decision Trees trained on simulated samples or alternatively, where possible, on real data. Embedding Lamarr in the general LHCb Gauss Simulation framework allows combining its execution with any of the available generators in a seamless way. Lamarr has been validated by comparing key reconstructed quantities with Detailed Simulation. Good agreement of the simulated distributions is obtained with two-order-of-magnitude speed-up of the simulation phase.
Abstract:About 90% of the computing resources available to the LHCb experiment has been spent to produce simulated data samples for Run 2 of the Large Hadron Collider at CERN. The upgraded LHCb detector will be able to collect larger data samples, requiring many more simulated events to analyze the data to be collected in Run 3. Simulation is a key necessity of analysis to interpret signal vs background and measure efficiencies. The needed simulation will far exceed the pledged resources, requiring an evolution in technologies and techniques to produce these simulated data samples. In this contribution, we discuss Lamarr, a Gaudi-based framework to speed-up the simulation production parametrizing both the detector response and the reconstruction algorithms of the LHCb experiment. Deep Generative Models powered by several algorithms and strategies are employed to effectively parametrize the high-level response of the single components of the LHCb detector, encoding within neural networks the experimental errors and uncertainties introduced in the detection and reconstruction phases. Where possible, models are trained directly on real data, statistically subtracting any background components through weights application. Embedding Lamarr in the general LHCb Gauss Simulation framework allows to combine its execution with any of the available generators in a seamless way. The resulting software package enables a simulation process completely independent of the Detailed Simulation used to date.
Abstract:The simplest and often most effective way of parallelizing the training of complex machine learning models is to execute several training instances on multiple machines, possibly scanning the hyperparameter space to optimize the underlying statistical model and the learning procedure. Often, such a meta learning procedure is limited by the ability of accessing securely a common database organizing the knowledge of the previous and ongoing trials. Exploiting opportunistic GPUs provided in different environments represents a further challenge when designing such optimization campaigns. In this contribution we discuss how a set of RestAPIs can be used to access a dedicated service based on INFN Cloud to monitor and possibly coordinate multiple training instances, with gradient-less optimization techniques, via simple HTTP requests. The service, named Hopaas (Hyperparameter OPtimization As A Service), is made of web interface and sets of APIs implemented with a FastAPI back-end running through Uvicorn and NGINX in a virtual instance of INFN Cloud. The optimization algorithms are currently based on Bayesian techniques as provided by Optuna. A Python front-end is also made available for quick prototyping. We present applications to hyperparameter optimization campaigns performed combining private, INFN Cloud and CINECA resources.
Abstract:The increasing luminosities of future data taking at Large Hadron Collider and next generation collider experiments require an unprecedented amount of simulated events to be produced. Such large scale productions demand a significant amount of valuable computing resources. This brings a demand to use new approaches to event generation and simulation of detector responses. In this paper, we discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events. We emphasize main pitfalls in the application of GANs and study the systematic effects in detail. The presented results are based on the Geant4 simulation of the LHCb Cherenkov detector.