Abstract:Speaker recognition systems based on deep speaker embeddings have achieved significant performance in controlled conditions according to the results obtained for early NIST SRE (Speaker Recognition Evaluation) datasets. From the practical point of view, taking into account the increased interest in virtual assistants (such as Amazon Alexa, Google Home, AppleSiri, etc.), speaker verification on short utterances in uncontrolled noisy environment conditions is one of the most challenging and highly demanded tasks. This paper presents approaches aimed to achieve two goals: a) improve the quality of far-field speaker verification systems in the presence of environmental noise, reverberation and b) reduce the system qualitydegradation for short utterances. For these purposes, we considered deep neural network architectures based on TDNN (TimeDelay Neural Network) and ResNet (Residual Neural Network) blocks. We experimented with state-of-the-art embedding extractors and their training procedures. Obtained results confirm that ResNet architectures outperform the standard x-vector approach in terms of speaker verification quality for both long-duration and short-duration utterances. We also investigate the impact of speech activity detector, different scoring models, adaptation and score normalization techniques. The experimental results are presented for publicly available data and verification protocols for the VoxCeleb1, VoxCeleb2, and VOiCES datasets.
Abstract:This paper presents the Speech Technology Center (STC) speaker recognition (SR) systems submitted to the VOiCES From a Distance challenge 2019. The challenge's SR task is focused on the problem of speaker recognition in single channel distant/far-field audio under noisy conditions. In this work we investigate different deep neural networks architectures for speaker embedding extraction to solve the task. We show that deep networks with residual frame level connections outperform more shallow architectures. Simple energy based speech activity detector (SAD) and automatic speech recognition (ASR) based SAD are investigated in this work. We also address the problem of data preparation for robust embedding extractors training. The reverberation for the data augmentation was performed using automatic room impulse response generator. In our systems we used discriminatively trained cosine similarity metric learning model as embedding backend. Scores normalization procedure was applied for each individual subsystem we used. Our final submitted systems were based on the fusion of different subsystems. The results obtained on the VOiCES development and evaluation sets demonstrate effectiveness and robustness of the proposed systems when dealing with distant/far-field audio under noisy conditions.