Abstract:Deep reinforcement learning (DRL)-based frameworks, featuring Transformer-style policy networks, have demonstrated their efficacy across various vehicle routing problem (VRP) variants. However, the application of these methods to the multi-trip time-dependent vehicle routing problem (MTTDVRP) with maximum working hours constraints -- a pivotal element of urban logistics -- remains largely unexplored. This paper introduces a DRL-based method called the Simultaneous Encoder and Dual Decoder Attention Model (SED2AM), tailored for the MTTDVRP with maximum working hours constraints. The proposed method introduces a temporal locality inductive bias to the encoding module of the policy networks, enabling it to effectively account for the time-dependency in travel distance or time. The decoding module of SED2AM includes a vehicle selection decoder that selects a vehicle from the fleet, effectively associating trips with vehicles for functional multi-trip routing. Additionally, this decoding module is equipped with a trip construction decoder leveraged for constructing trips for the vehicles. This policy model is equipped with two classes of state representations, fleet state and routing state, providing the information needed for effective route construction in the presence of maximum working hours constraints. Experimental results using real-world datasets from two major Canadian cities not only show that SED2AM outperforms the current state-of-the-art DRL-based and metaheuristic-based baselines but also demonstrate its generalizability to solve larger-scale problems.
Abstract:In response to carbon-neutral policies in developed countries, electric vehicles route optimization has gained importance for logistics companies. With the increasing focus on customer expectations and the shift towards more customer-oriented business models, the integration of delivery time-windows has become essential in logistics operations. Recognizing the critical nature of these developments, this article studies the heterogeneous electric vehicle routing problem with time-window constraints (HEVRPTW). To solve this variant of vehicle routing problem (VRP), we propose a DRL-based approach, named Edge-enhanced Dual attentIon encoderR and feature-EnhanCed dual aTtention decoder (Edge-DIRECT). Edge-DIRECT features an extra graph representation, the node connectivity of which is based on the overlap of customer time-windows. Edge-DIRECT's self-attention encoding mechanism is enhanced by exploiting the energy consumption and travel time between the locations. To effectively account for the heterogeneity of the EVs' fleet, a dual attention decoder has been introduced. Experimental results based on two real-world datasets reveal that Edge-DIRECT outperforms a state-of-the-art DRL-based method and a well-established heuristic approach in solution quality and execution time. Furthermore, it exhibits competitive performance when compared to another leading heuristic method.
Abstract:Although many real-world applications, such as disease prediction, and fault detection suffer from class imbalance, most existing graph-based classification methods ignore the skewness of the distribution of classes; therefore, tend to be biased towards the majority class(es). Conventional methods typically tackle this problem through the assignment of weights to each one of the class samples based on a function of their loss, which can lead to over-fitting on outliers. In this paper, we propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights by simultaneously minimizing the unbiased meta-data set loss and optimizing the model weights through the use of a small unbiased meta-data set. Through experiments, we have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy, the area under the receiver operating characteristic (AUC-ROC) curve, and macro F1-Score for classification tasks on two different datasets.