Abstract:In response to carbon-neutral policies in developed countries, electric vehicles route optimization has gained importance for logistics companies. With the increasing focus on customer expectations and the shift towards more customer-oriented business models, the integration of delivery time-windows has become essential in logistics operations. Recognizing the critical nature of these developments, this article studies the heterogeneous electric vehicle routing problem with time-window constraints (HEVRPTW). To solve this variant of vehicle routing problem (VRP), we propose a DRL-based approach, named Edge-enhanced Dual attentIon encoderR and feature-EnhanCed dual aTtention decoder (Edge-DIRECT). Edge-DIRECT features an extra graph representation, the node connectivity of which is based on the overlap of customer time-windows. Edge-DIRECT's self-attention encoding mechanism is enhanced by exploiting the energy consumption and travel time between the locations. To effectively account for the heterogeneity of the EVs' fleet, a dual attention decoder has been introduced. Experimental results based on two real-world datasets reveal that Edge-DIRECT outperforms a state-of-the-art DRL-based method and a well-established heuristic approach in solution quality and execution time. Furthermore, it exhibits competitive performance when compared to another leading heuristic method.
Abstract:Although many real-world applications, such as disease prediction, and fault detection suffer from class imbalance, most existing graph-based classification methods ignore the skewness of the distribution of classes; therefore, tend to be biased towards the majority class(es). Conventional methods typically tackle this problem through the assignment of weights to each one of the class samples based on a function of their loss, which can lead to over-fitting on outliers. In this paper, we propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights by simultaneously minimizing the unbiased meta-data set loss and optimizing the model weights through the use of a small unbiased meta-data set. Through experiments, we have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy, the area under the receiver operating characteristic (AUC-ROC) curve, and macro F1-Score for classification tasks on two different datasets.