Abstract:In the recent past, Natural language Inference (NLI) has gained significant attention, particularly given its promise for downstream NLP tasks. However, its true impact is limited and has not been well studied. Therefore, in this paper, we explore the utility of NLI for one of the most prominent downstream tasks, viz. Question Answering (QA). We transform the one of the largest available MRC dataset (RACE) to an NLI form, and compare the performances of a state-of-the-art model (RoBERTa) on both these forms. We propose new characterizations of questions, and evaluate the performance of QA and NLI models on these categories. We highlight clear categories for which the model is able to perform better when the data is presented in a coherent entailment form, and a structured question-answer concatenation form, respectively.
Abstract:In recent years, the Natural Language Inference (NLI) task has garnered significant attention, with new datasets and models achieving near human-level performance on it. However, the full promise of NLI -- particularly that it learns knowledge that should be generalizable to other downstream NLP tasks -- has not been realized. In this paper, we study this unfulfilled promise from the lens of two downstream tasks: question answering (QA), and text summarization. We conjecture that a key difference between the NLI datasets and these downstream tasks concerns the length of the premise; and that creating new long premise NLI datasets out of existing QA datasets is a promising avenue for training a truly generalizable NLI model. We validate our conjecture by showing competitive results on the task of QA and obtaining the best reported results on the task of Checking Factual Correctness of Summaries.