Abstract:Neural beamformers, which integrate both pre-separation and beamforming modules, have demonstrated impressive effectiveness in target speech extraction. Nevertheless, the performance of these beamformers is inherently limited by the predictive accuracy of the pre-separation module. In this paper, we introduce a neural beamformer supported by a dual-path transformer. Initially, we employ the cross-attention mechanism in the time domain to extract crucial spatial information related to beamforming from the noisy covariance matrix. Subsequently, in the frequency domain, the self-attention mechanism is employed to enhance the model's ability to process frequency-specific details. By design, our model circumvents the influence of pre-separation modules, delivering performance in a more comprehensive end-to-end manner. Experimental results reveal that our model not only outperforms contemporary leading neural beamforming algorithms in separation performance but also achieves this with a significant reduction in parameter count.
Abstract:Recently, deep learning-based beamforming algorithms have shown promising performance in target speech extraction tasks. However, most systems do not fully utilize spatial information. In this paper, we propose a target speech extraction network that utilizes spatial information to enhance the performance of neural beamformer. To achieve this, we first use the UNet-TCN structure to model input features and improve the estimation accuracy of the speech pre-separation module by avoiding information loss caused by direct dimensionality reduction in other models. Furthermore, we introduce a multi-head cross-attention mechanism that enhances the neural beamformer's perception of spatial information by making full use of the spatial information received by the array. Experimental results demonstrate that our approach, which incorporates a more reasonable target mask estimation network and a spatial information-based cross-attention mechanism into the neural beamformer, effectively improves speech separation performance.