Abstract:Early detection of cancer can help improve patient prognosis by early intervention. Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, however, there is a potential for these to be missed leading to delayed diagnosis. To overcome these challenges, we present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions. We propose (a) a vision transformer based Mask R-CNN network for lesion detection and segmentation of clinical images, and (b) Multiple Instance Learning (MIL) based scheme for classification. Current results show that the segmentation model produces segmentation masks and bounding boxes with up to 82% overlap accuracy score on unseen external test data and surpassing reviewed segmentation benchmarks. Next, a classification F1-score of 85% on the internal cohort test set. An app has been developed to perform lesion segmentation taken via a smart device. Future work involves employing endoscopic video data for precise early detection and prognosis.
Abstract:In this paper, we attempt to address the challenging problem of counting built-structures in the satellite imagery. Building density is a more accurate estimate of the population density, urban area expansion and its impact on the environment, than the built-up area segmentation. However, building shape variances, overlapping boundaries, and variant densities make this a complex task. To tackle this difficult problem, we propose a deep learning based regression technique for counting built-structures in satellite imagery. Our proposed framework intelligently combines features from different regions of satellite image using attention based re-weighting techniques. Multiple parallel convolutional networks are designed to capture information at different granulates. These features are combined into the FusionNet which is trained to weigh features from different granularity differently, allowing us to predict a precise building count. To train and evaluate the proposed method, we put forward a new large-scale and challenging built-structure-count dataset. Our dataset is constructed by collecting satellite imagery from diverse geographical areas (planes, urban centers, deserts, etc.,) across the globe (Asia, Europe, North America, and Africa) and captures the wide density of built structures. Detailed experimental results and analysis validate the proposed technique. FusionNet has Mean Absolute Error of 3.65 and R-squared measure of 88% over the testing data. Finally, we perform the test on the 274:3 ? 103 m2 of the unseen region, with the error of 19 buildings off the 656 buildings in that area.
Abstract:Deep convolutional neural networks (CNNs) have outperformed existing object recognition and detection algorithms. On the other hand satellite imagery captures scenes that are diverse. This paper describes a deep learning approach that analyzes a geo referenced satellite image and efficiently detects built structures in it. A Fully Convolution Network (FCN) is trained on low resolution Google earth satellite imagery in order to achieve end result. The detected built communities are then correlated with the vaccination activity that has furnished some useful statistics.