Abstract:It is increasingly common for data to possess intricate structure, necessitating new models and analytical tools. Graphs, a prominent type of structure, can encode the relationships between any two entities (nodes). However, graphs neither allow connections that are not dyadic nor permit relationships between sets of nodes. We thus turn to simplicial complexes for connecting more than two nodes as well as modeling relationships between simplices, such as edges and triangles. Our data then consist of signals lying on topological spaces, represented by simplicial complexes. Much recent work explores these topological signals, albeit primarily through deterministic formulations. We propose a probabilistic framework for random signals defined on simplicial complexes. Specifically, we generalize the classical notion of stationarity. By spectral dualities of Hodge and Dirac theory, we define stationary topological signals as the outputs of topological filters given white noise. This definition naturally extends desirable properties of stationarity that hold for both time-series and graph signals. Crucially, we properly define topological power spectral density (PSD) through a clear spectral characterization. We then discuss the advantages of topological stationarity due to spectral properties via the PSD. In addition, we empirically demonstrate the practicality of these benefits through multiple synthetic and real-world simulations.
Abstract:Interest in bilevel optimization has grown in recent years, partially due to its applications to tackle challenging machine-learning problems. Several exciting recent works have been centered around developing efficient gradient-based algorithms that can solve bilevel optimization problems with provable guarantees. However, the existing literature mainly focuses on bilevel problems either without constraints, or featuring only simple constraints that do not couple variables across the upper and lower levels, excluding a range of complex applications. Our paper studies this challenging but less explored scenario and develops a (fully) first-order algorithm, which we term BLOCC, to tackle BiLevel Optimization problems with Coupled Constraints. We establish rigorous convergence theory for the proposed algorithm and demonstrate its effectiveness on two well-known real-world applications - hyperparameter selection in support vector machine (SVM) and infrastructure planning in transportation networks using the real data from the city of Seville.