Abstract:This article presents an original method for Text-to-Sign Translation. It compensates data scarcity using a domain-specific parallel corpus of alignments between text and hierarchical formal descriptions of Sign Language videos in AZee. Based on the detection of similarities present in the source text, the proposed algorithm recursively exploits matches and substitutions of aligned segments to build multiple candidate translations for a novel statement. This helps preserving Sign Language structures as much as possible before falling back on literal translations too quickly, in a generative way. The resulting translations are in the form of AZee expressions, designed to be used as input to avatar synthesis systems. We present a test set tailored to showcase its potential for expressiveness and generation of idiomatic target language, and observed limitations. This work finally opens prospects on how to evaluate translation and linguistic aspects, such as accuracy and grammatical fluency.
Abstract:Developing successful sign language recognition, generation, and translation systems requires expertise in a wide range of fields, including computer vision, computer graphics, natural language processing, human-computer interaction, linguistics, and Deaf culture. Despite the need for deep interdisciplinary knowledge, existing research occurs in separate disciplinary silos, and tackles separate portions of the sign language processing pipeline. This leads to three key questions: 1) What does an interdisciplinary view of the current landscape reveal? 2) What are the biggest challenges facing the field? and 3) What are the calls to action for people working in the field? To help answer these questions, we brought together a diverse group of experts for a two-day workshop. This paper presents the results of that interdisciplinary workshop, providing key background that is often overlooked by computer scientists, a review of the state-of-the-art, a set of pressing challenges, and a call to action for the research community.