University of Massachusetts Amherst
Abstract:Question answering (QA) over real-world knowledge bases (KBs) is challenging because of the diverse (essentially unbounded) types of reasoning patterns needed. However, we hypothesize in a large KB, reasoning patterns required to answer a query type reoccur for various entities in their respective subgraph neighborhoods. Leveraging this structural similarity between local neighborhoods of different subgraphs, we introduce a semiparametric model with (i) a nonparametric component that for each query, dynamically retrieves other similar $k$-nearest neighbor (KNN) training queries along with query-specific subgraphs and (ii) a parametric component that is trained to identify the (latent) reasoning patterns from the subgraphs of KNN queries and then apply it to the subgraph of the target query. We also propose a novel algorithm to select a query-specific compact subgraph from within the massive knowledge graph (KG), allowing us to scale to full Freebase KG containing billions of edges. We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms. The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
Abstract:Over the past few decades, underwater image enhancement has attracted increasing amount of research effort due to its significance in underwater robotics and ocean engineering. Research has evolved from implementing physics-based solutions to using very deep CNNs and GANs. However, these state-of-art algorithms are computationally expensive and memory intensive. This hinders their deployment on portable devices for underwater exploration tasks. These models are trained on either synthetic or limited real world datasets making them less practical in real-world scenarios. In this paper we propose a shallow neural network architecture, \textbf{Shallow-UWnet} which maintains performance and has fewer parameters than the state-of-art models. We also demonstrated the generalization of our model by benchmarking its performance on combination of synthetic and real-world datasets.