Abstract:Resource Description Framework (RDF) and Property Graph (PG) are the two most commonly used data models for representing, storing, and querying graph data. We present Expressive Reasoning Graph Store (ERGS) -- a graph store built on top of JanusGraph (a Property Graph store) that also allows storing and querying of RDF datasets. First, we describe how RDF data can be translated into a Property Graph representation and then describe a query translation module that converts SPARQL queries into a series of Gremlin traversals. The converters and translators thus developed can allow any Apache Tinkerpop compliant graph database to store and query RDF datasets. We demonstrate the effectiveness of our proposed approach using JanusGraph as the base Property Graph store and compare its performance with standard RDF systems.
Abstract:We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning). Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation. Inference is omnidirectional rather than focused on predefined target variables, and corresponds to logical reasoning, including classical first-order logic theorem proving as a special case. The model is end-to-end differentiable, and learning minimizes a novel loss function capturing logical contradiction, yielding resilience to inconsistent knowledge. It also enables the open-world assumption by maintaining bounds on truth values which can have probabilistic semantics, yielding resilience to incomplete knowledge.