Abstract:E-commerce platforms consistently aim to provide personalized recommendations to drive user engagement, enhance overall user experience, and improve business metrics. Most e-commerce platforms contain multiple carousels on their homepage, each attempting to capture different facets of the shopping experience. Given varied user preferences, optimizing the placement of these carousels is critical for improved user satisfaction. Furthermore, items within a carousel may change dynamically based on sequential user actions, thus necessitating online ranking of carousels. In this work, we present a scalable end-to-end production system to optimally rank item-carousels in real-time on the Walmart online grocery homepage. The proposed system utilizes a novel model that captures the user's affinity for different carousels and their likelihood to interact with previously unseen items. Our system is flexible in design and is easily extendable to settings where page components need to be ranked. We provide the system architecture consisting of a model development phase and an online inference framework. To ensure low-latency, various optimizations across these stages are implemented. We conducted extensive online evaluations to benchmark against the prior experience. In production, our system resulted in an improvement in item discovery, an increase in online engagement, and a significant lift on add-to-carts (ATCs) per visitor on the homepage.
Abstract:Tactile sensing or fabric hand plays a critical role in an individual's decision to buy a certain fabric from the range of available fabrics for a desired application. Therefore, textile and clothing manufacturers have long been in search of an objective method for assessing fabric hand, which can then be used to engineer fabrics with a desired hand. Recognizing textures and materials in real-world images has played an important role in object recognition and scene understanding. In this paper, we explore how to computationally characterize apparent or latent properties (e.g., surface smoothness) of materials, i.e., computational material surface characterization, which moves a step further beyond material recognition. We formulate the problem as a very fine-grained texture classification problem, and study how deep learning-based texture representation techniques can help tackle the task. We introduce a new, large-scale challenging microscopic material surface dataset (CoMMonS), geared towards an automated fabric quality assessment mechanism in an intelligent manufacturing system. We then conduct a comprehensive evaluation of state-of-the-art deep learning-based methods for texture classification using CoMMonS. Additionally, we propose a multi-level texture encoding and representation network (MuLTER), which simultaneously leverages low- and high-level features to maintain both texture details and spatial information in the texture representation. Our results show that, in comparison with the state-of-the-art deep texture descriptors, MuLTER yields higher accuracy not only on our CoMMonS dataset for material characterization, but also on established datasets such as MINC-2500 and GTOS-mobile for material recognition.