Abstract:The field of autonomous vehicles (AVs) predominantly leverages multi-modal integration of LiDAR and camera data to achieve better performance compared to using a single modality. However, the fusion process encounters challenges in detecting distant objects due to the disparity between the high resolution of cameras and the sparse data from LiDAR. Insufficient integration of global perspectives with local-level details results in sub-optimal fusion performance.To address this issue, we have developed an innovative two-stage fusion process called Quantum Inverse Contextual Vision Transformers (Q-ICVT). This approach leverages adiabatic computing in quantum concepts to create a novel reversible vision transformer known as the Global Adiabatic Transformer (GAT). GAT aggregates sparse LiDAR features with semantic features in dense images for cross-modal integration in a global form. Additionally, the Sparse Expert of Local Fusion (SELF) module maps the sparse LiDAR 3D proposals and encodes position information of the raw point cloud onto the dense camera feature space using a gating point fusion approach. Our experiments show that Q-ICVT achieves an mAPH of 82.54 for L2 difficulties on the Waymo dataset, improving by 1.88% over current state-of-the-art fusion methods. We also analyze GAT and SELF in ablation studies to highlight the impact of Q-ICVT. Our code is available at https://github.com/sanjay-810/Qicvt Q-ICVT
Abstract:Tooth segmentation from intraoral scans is a crucial part of digital dentistry. Many Deep Learning based tooth segmentation algorithms have been developed for this task. In most of the cases, high accuracy has been achieved, although, most of the available tooth segmentation techniques make an implicit restrictive assumption of full jaw model and they report accuracy based on full jaw models. Medically, however, in certain cases, full jaw tooth scan is not required or may not be available. Given this practical issue, it is important to understand the robustness of currently available widely used Deep Learning based tooth segmentation techniques. For this purpose, we applied available segmentation techniques on partial intraoral scans and we discovered that the available deep Learning techniques under-perform drastically. The analysis and comparison presented in this work would help us in understanding the severity of the problem and allow us to develop robust tooth segmentation technique without strong assumption of full jaw model.