Abstract:We give a dimension-independent sparsification result for suprema of centered Gaussian processes: Let $T$ be any (possibly infinite) bounded set of vectors in $\mathbb{R}^n$, and let $\{{\boldsymbol{X}}_t\}_{t\in T}$ be the canonical Gaussian process on $T$. We show that there is an $O_\varepsilon(1)$-size subset $S \subseteq T$ and a set of real values $\{c_s\}_{s \in S}$ such that $\sup_{s \in S} \{{\boldsymbol{X}}_s + c_s\}$ is an $\varepsilon$-approximator of $\sup_{t \in T} {\boldsymbol{X}}_t$. Notably, the size of $S$ is completely independent of both the size of $T$ and of the ambient dimension $n$. We use this to show that every norm is essentially a junta when viewed as a function over Gaussian space: Given any norm $\nu(x)$ on $\mathbb{R}^n$, there is another norm $\psi(x)$ which depends only on the projection of $x$ along $O_\varepsilon(1)$ directions, for which $\psi({\boldsymbol{g}})$ is a multiplicative $(1 \pm \varepsilon)$-approximation of $\nu({\boldsymbol{g}})$ with probability $1-\varepsilon$ for ${\boldsymbol{g}} \sim N(0,I_n)$. We also use our sparsification result for suprema of centered Gaussian processes to give a sparsification lemma for convex sets of bounded geometric width: Any intersection of (possibly infinitely many) halfspaces in $\mathbb{R}^n$ that are at distance $O(1)$ from the origin is $\varepsilon$-close, under $N(0,I_n)$, to an intersection of only $O_\varepsilon(1)$ many halfspaces. We describe applications to agnostic learning and tolerant property testing.
Abstract:A natural problem in high-dimensional inference is to decide if a classifier $f:\mathbb{R}^n \rightarrow [-1,1]$ depends on a small number of linear directions of its input data. Call a function $g: \mathbb{R}^n \rightarrow [-1,1]$, a linear $k$-junta if it is completely determined by some $k$-dimensional subspace of the input space. A recent work of the authors showed that linear $k$-juntas are testable. Thus there exists an algorithm to distinguish between: 1. $f: \mathbb{R}^n \rightarrow \{-1,1\}$ which is a linear $k$-junta with surface area $s$, 2. $f$ is $\epsilon$-far from any linear $k$-junta, where the query complexity of the algorithm is independent of the ambient dimension $n$. Following the surge of interest in noise-tolerant property testing, in this paper we prove a noise-tolerant (or robust) version of this result. Namely, we give an algorithm which given any $c>0$, $\epsilon>0$, distinguishes between 1. $f: \mathbb{R}^n \rightarrow \{-1,1\}$ has correlation at least $c$ with some linear $k$-junta with surface area $s$. 2. $f$ has correlation at most $c-\epsilon$ with any linear $k$-junta. Our query complexity is qualitatively the same, i.e., remains independent of $n$ and is polynomially dependent on $k$. A major motivation for studying Linear Junta Testing come from statistical models where it is crucial to allow noise. In the language of model compression, our results show statistical models can be "compressed" in query complexity that depends only on the size of the desired compression, when the compression is a linear Junta.
Abstract:What kinds of functions are learnable from their satisfying assignments? Motivated by this simple question, we extend the framework of De, Diakonikolas, and Servedio [DDS15], which studied the learnability of probability distributions over $\{0,1\}^n$ defined by the set of satisfying assignments to "low-complexity" Boolean functions, to Boolean-valued functions defined over continuous domains. In our learning scenario there is a known "background distribution" $\mathcal{D}$ over $\mathbb{R}^n$ (such as a known normal distribution or a known log-concave distribution) and the learner is given i.i.d. samples drawn from a target distribution $\mathcal{D}_f$, where $\mathcal{D}_f$ is $\mathcal{D}$ restricted to the satisfying assignments of an unknown low-complexity Boolean-valued function $f$. The problem is to learn an approximation $\mathcal{D}'$ of the target distribution $\mathcal{D}_f$ which has small error as measured in total variation distance. We give a range of efficient algorithms and hardness results for this problem, focusing on the case when $f$ is a low-degree polynomial threshold function (PTF). When the background distribution $\mathcal{D}$ is log-concave, we show that this learning problem is efficiently solvable for degree-1 PTFs (i.e.,~linear threshold functions) but not for degree-2 PTFs. In contrast, when $\mathcal{D}$ is a normal distribution, we show that this learning problem is efficiently solvable for degree-2 PTFs but not for degree-4 PTFs. Our hardness results rely on standard assumptions about secure signature schemes.
Abstract:We study density estimation for classes of shift-invariant distributions over $\mathbb{R}^d$. A multidimensional distribution is "shift-invariant" if, roughly speaking, it is close in total variation distance to a small shift of it in any direction. Shift-invariance relaxes smoothness assumptions commonly used in non-parametric density estimation to allow jump discontinuities. The different classes of distributions that we consider correspond to different rates of tail decay. For each such class we give an efficient algorithm that learns any distribution in the class from independent samples with respect to total variation distance. As a special case of our general result, we show that $d$-dimensional shift-invariant distributions which satisfy an exponential tail bound can be learned to total variation distance error $\epsilon$ using $\tilde{O}_d(1/ \epsilon^{d+2})$ examples and $\tilde{O}_d(1/ \epsilon^{2d+2})$ time. This implies that, for constant $d$, multivariate log-concave distributions can be learned in $\tilde{O}_d(1/\epsilon^{2d+2})$ time using $\tilde{O}_d(1/\epsilon^{d+2})$ samples, answering a question of [Diakonikolas, Kane and Stewart, 2016] All of our results extend to a model of noise-tolerant density estimation using Huber's contamination model, in which the target distribution to be learned is a $(1-\epsilon,\epsilon)$ mixture of some unknown distribution in the class with some other arbitrary and unknown distribution, and the learning algorithm must output a hypothesis distribution with total variation distance error $O(\epsilon)$ from the target distribution. We show that our general results are close to best possible by proving a simple $\Omega\left(1/\epsilon^d\right)$ information-theoretic lower bound on sample complexity even for learning bounded distributions that are shift-invariant.
Abstract:We study the problem of learning an unknown mixture of $k$ rankings over $n$ elements, given access to noisy samples drawn from the unknown mixture. We consider a range of different noise models, including natural variants of the "heat kernel" noise framework and the Mallows model. For each of these noise models we give an algorithm which, under mild assumptions, learns the unknown mixture to high accuracy and runs in $n^{O(\log k)}$ time. The best previous algorithms for closely related problems have running times which are exponential in $k$.
Abstract:We study the learnability of sums of independent integer random variables given a bound on the size of the union of their supports. For $\mathcal{A} \subset \mathbf{Z}_{+}$, a sum of independent random variables with collective support $\mathcal{A}$} (called an $\mathcal{A}$-sum in this paper) is a distribution $\mathbf{S} = \mathbf{X}_1 + \cdots + \mathbf{X}_N$ where the $\mathbf{X}_i$'s are mutually independent (but not necessarily identically distributed) integer random variables with $\cup_i \mathsf{supp}(\mathbf{X}_i) \subseteq \mathcal{A}.$ We give two main algorithmic results for learning such distributions: 1. For the case $| \mathcal{A} | = 3$, we give an algorithm for learning $\mathcal{A}$-sums to accuracy $\epsilon$ that uses $\mathsf{poly}(1/\epsilon)$ samples and runs in time $\mathsf{poly}(1/\epsilon)$, independent of $N$ and of the elements of $\mathcal{A}$. 2. For an arbitrary constant $k \geq 4$, if $\mathcal{A} = \{ a_1,...,a_k\}$ with $0 \leq a_1 < ... < a_k$, we give an algorithm that uses $\mathsf{poly}(1/\epsilon) \cdot \log \log a_k$ samples (independent of $N$) and runs in time $\mathsf{poly}(1/\epsilon, \log a_k).$ We prove an essentially matching lower bound: if $|\mathcal{A}| = 4$, then any algorithm must use $\Omega(\log \log a_4) $ samples even for learning to constant accuracy. We also give similar-in-spirit (but quantitatively very different) algorithmic results, and essentially matching lower bounds, for the case in which $\mathcal{A}$ is not known to the learner.
Abstract:The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12,DRWY12, MS13, BIMP13, LZ15,DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexity and algorithmic complexity of the most general version of the problem, under both bit-flip noise and erasure noise model. We give essentially matching upper and lower sample complexity bounds for both noise models, and efficient algorithms matching these sample complexity bounds up to polynomial factors.
Abstract:In the (deletion-channel) trace reconstruction problem, there is an unknown $n$-bit source string $x$. An algorithm is given access to independent traces of $x$, where a trace is formed by deleting each bit of~$x$ independently with probability~$\delta$. The goal of the algorithm is to recover~$x$ exactly (with high probability), while minimizing samples (number of traces) and running time. Previously, the best known algorithm for the trace reconstruction problem was due to Holenstein~et~al.; it uses $\exp(\tilde{O}(n^{1/2}))$ samples and running time for any fixed $0 < \delta < 1$. It is also what we call a "mean-based algorithm", meaning that it only uses the empirical means of the individual bits of the traces. Holenstein~et~al.~also gave a lower bound, showing that any mean-based algorithm must use at least $n^{\tilde{\Omega}(\log n)}$ samples. In this paper we improve both of these results, obtaining matching upper and lower bounds for mean-based trace reconstruction. For any constant deletion rate $0 < \delta < 1$, we give a mean-based algorithm that uses $\exp(O(n^{1/3}))$ time and traces; we also prove that any mean-based algorithm must use at least $\exp(\Omega(n^{1/3}))$ traces. In fact, we obtain matching upper and lower bounds even for $\delta$ subconstant and $\rho := 1-\delta$ subconstant: when $(\log^3 n)/n \ll \delta \leq 1/2$ the bound is $\exp(-\Theta(\delta n)^{1/3})$, and when $1/\sqrt{n} \ll \rho \leq 1/2$ the bound is $\exp(-\Theta(n/\rho)^{1/3})$. Our proofs involve estimates for the maxima of Littlewood polynomials on complex disks. We show that these techniques can also be used to perform trace reconstruction with random insertions and bit-flips in addition to deletions. We also find a surprising result: for deletion probabilities $\delta > 1/2$, the presence of insertions can actually help with trace reconstruction.
Abstract:An $(n,k)$-Poisson Multinomial Distribution (PMD) is the distribution of the sum of $n$ independent random vectors supported on the set ${\cal B}_k=\{e_1,\ldots,e_k\}$ of standard basis vectors in $\mathbb{R}^k$. We show that any $(n,k)$-PMD is ${\rm poly}\left({k\over \sigma}\right)$-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on $n$ from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on $n$ and $1/\varepsilon$ of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of $(n,k)$-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from $O_k(1/\varepsilon^2)$ samples in ${\rm poly}_k(1/\varepsilon)$-time, removing the quasi-polynomial dependence of the running time on $1/\varepsilon$ from the algorithm of Daskalakis, Kamath, and Tzamos.
Abstract:In the noisy population recovery problem of Dvir et al., the goal is to learn an unknown distribution $f$ on binary strings of length $n$ from noisy samples. For some parameter $\mu \in [0,1]$, a noisy sample is generated by flipping each coordinate of a sample from $f$ independently with probability $(1-\mu)/2$. We assume an upper bound $k$ on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error $\varepsilon$. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We show that for $\mu > 0$, the sample complexity (and hence the algorithmic complexity) is bounded by a polynomial in $k$, $n$ and $1/\varepsilon$ improving upon the previous best result of $\mathsf{poly}(k^{\log\log k},n,1/\varepsilon)$ due to Lovett and Zhang. Our proof combines ideas from Lovett and Zhang with a \emph{noise attenuated} version of M\"{o}bius inversion. In turn, the latter crucially uses the construction of \emph{robust local inverse} due to Moitra and Saks.