Abstract:Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+ and Market1501. The evaluation codebase and results will be made publicly available for community use.
Abstract:Person re-identification is critical in surveillance applications. Current approaches rely on appearance based features extracted from a single or multiple shots of the target and candidate matches. These approaches are at a disadvantage when trying to distinguish between candidates dressed in similar colors or when targets change their clothing. In this paper we propose a dynamics-based feature to overcome this limitation. The main idea is to capture soft biometrics from gait and motion patterns by gathering dense short trajectories (tracklets) which are Fisher vector encoded. To illustrate the merits of the proposed features we introduce three new "appearance-impaired" datasets. Our experiments on the original and the appearance impaired datasets demonstrate the benefits of incorporating dynamics-based information with appearance-based information to re-identification algorithms.