Abstract:In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset1 and the code for reproducing our evaluation results2 are made publicly available.
Abstract:Adapting robot programmes to changes in the environment is a well-known industry problem, and it is the reason why many tedious tasks are not automated in small and medium-sized enterprises (SMEs). A semantic world model of a robot's previously unknown environment created from point clouds is one way for these companies to automate assembly tasks that are typically performed by humans. The semantic segmentation of point clouds for robot manipulators or cobots in industrial environments has received little attention due to a lack of suitable datasets. This paper describes a pipeline for creating synthetic point clouds for specific use cases in order to train a model for point cloud semantic segmentation. We show that models trained with our data achieve high per-class accuracy (> 90%) for semantic point cloud segmentation on unseen real-world data. Our approach is applicable not only to the 3D camera used in training data generation but also to other depth cameras based on different technologies. The application tested in this work is a industry-related peg-in-the-hole process. With our approach the necessity of user assistance during a robot's commissioning can be reduced to a minimum.