Abstract:Deep Neural Networks (DNNs) require large amounts of annotated training data for a good performance. Often this data is generated using manual labeling (error-prone and time-consuming) or rendering (requiring geometry and material information). Both approaches make it difficult or uneconomic to apply them to many small-scale applications. A fast and straightforward approach of acquiring the necessary training data would allow the adoption of deep learning to even the smallest of applications. Chroma keying is the process of replacing a color (usually blue or green) with another background. Instead of chroma keying, we propose luminance keying for fast and straightforward training image acquisition. We deploy a black screen with high light absorption (99.99\%) to record roughly 1-minute long videos of our target objects, circumventing typical problems of chroma keying, such as color bleeding or color overlap between background color and object color. Next we automatically mask our objects using simple brightness thresholding, saving the need for manual annotation. Finally, we automatically place the objects on random backgrounds and train a 2D object detector. We do extensive evaluation of the performance on the widely-used YCB-V object set and compare favourably to other conventional techniques such as rendering, without needing 3D meshes, materials or any other information of our target objects and in a fraction of the time needed for other approaches. Our work demonstrates highly accurate training data acquisition allowing to start training state-of-the-art networks within minutes.
Abstract:An essential factor to achieve high accuracies in fingerprint recognition systems is the quality of its samples. Previous works mainly proposed supervised solutions based on image properties that neglects the minutiae extraction process, despite that most fingerprint recognition techniques are based on detected minutiae. Consequently, a fingerprint image might be assigned a high quality even if the utilized minutia extractor produces unreliable information. In this work, we propose a novel concept of assessing minutia and fingerprint quality based on minutia detection confidence (MiDeCon). MiDeCon can be applied to an arbitrary deep learning based minutia extractor and does not require quality labels for learning. We propose using the detection reliability of the extracted minutia as its quality indicator. By combining the highest minutia qualities, MiDeCon also accurately determines the quality of a full fingerprint. Experiments are conducted on the publicly available databases of the FVC 2006 and compared against several baselines, such as NIST's widely-used fingerprint image quality software NFIQ1 and NFIQ2. The results demonstrate a significantly stronger quality assessment performance of the proposed MiDeCon-qualities as related works on both, minutia- and fingerprint-level. The implementation is publicly available.