Abstract:Young children spend substantial portions of their waking hours in noisy preschool classrooms. In these environments, children's vocal interactions with teachers are critical contributors to their language outcomes, but manually transcribing these interactions is prohibitive. Using audio from child- and teacher-worn recorders, we propose an automated framework that uses open source software both to classify speakers (ALICE) and to transcribe their utterances (Whisper). We compare results from our framework to those from a human expert for 110 minutes of classroom recordings, including 85 minutes from child-word microphones (n=4 children) and 25 minutes from teacher-worn microphones (n=2 teachers). The overall proportion of agreement, that is, the proportion of correctly classified teacher and child utterances, was .76, with an error-corrected kappa of .50 and a weighted F1 of .76. The word error rate for both teacher and child transcriptions was .15, meaning that 15% of words would need to be deleted, added, or changed to equate the Whisper and expert transcriptions. Moreover, speech features such as the mean length of utterances in words, the proportion of teacher and child utterances that were questions, and the proportion of utterances that were responded to within 2.5 seconds were similar when calculated separately from expert and automated transcriptions. The results suggest substantial progress in analyzing classroom speech that may support children's language development. Future research using natural language processing is underway to improve speaker classification and to analyze results from the application of the automated it framework to a larger dataset containing classroom recordings from 13 children and 4 teachers observed on 17 occasions over one year.
Abstract:Environmental, social, and governance (ESG) reports are globally recognized as a keystone in sustainable enterprise development. This study aims to map the changing landscape of ESG topics within firms in the global market. A dynamic framework is developed to analyze ESG strategic management for individual classes, across multiple classes, and in alignment with a specific sustainability index. The output of these analytical processes forms the foundation of an ESG strategic model. Utilizing a rich collection of 21st-century ESG reports from technology companies, our experiment elucidates the changes in ESG perspectives by incorporating analytical keywords into the proposed framework. This work thus provides an empirical method that reveals the concurrent evolution of ESG topics over recent years.
Abstract:Several artificial neural networks (ANNs) have recently been developed as the Cox proportional hazard model for predicting cancer prognosis based on tumor transcriptome. However, they have not demonstrated significantly better performance than the traditional Cox regression with regularization. Training an ANN with high prediction power is challenging in the presence of a limited number of data samples and a high-dimensional feature space. Recent advancements in image classification have shown that contrastive learning can facilitate further learning tasks by learning good feature representation from a limited number of data samples. In this paper, we applied supervised contrastive learning to tumor gene expression and clinical data to learn feature representations in a low-dimensional space. We then used these learned features to train the Cox model for predicting cancer prognosis. Using data from The Cancer Genome Atlas (TCGA), we demonstrated that our contrastive learning-based Cox model (CLCox) significantly outperformed existing methods in predicting the prognosis of 18 types of cancer under consideration. We also developed contrastive learning-based classifiers to classify tumors into different risk groups and showed that contrastive learning can significantly improve classification accuracy.
Abstract:Rip currents pose a significant danger to those who visit beaches, as they can swiftly pull swimmers away from shore. Detecting these currents currently relies on costly equipment and is challenging to implement on a larger scale. The advent of unmanned aerial vehicles (UAVs) and camera technology, however, has made monitoring near-shore regions more accessible and scalable. This paper proposes a new framework for detecting rip currents using video-based methods that leverage optical flow estimation, offshore direction calculation, and temporal data fusion techniques. Through the analysis of videos from multiple beaches, including Palm Beach, Haulover, Ocean Reef Park, and South Beach, as well as YouTube footage, we demonstrate the efficacy of our approach, which aligns with human experts' annotations.