Abstract:Clear cell renal cell carcinoma (ccRCC) is one of the most common forms of intratumoral heterogeneity in the study of renal cancer. ccRCC originates from the epithelial lining of proximal convoluted renal tubules. These cells undergo abnormal mutations in the presence of Ki67 protein and create a lump-like structure through cell proliferation. Manual counting of tumor cells in the tissue-affected sections is one of the strongest prognostic markers for renal cancer. However, this procedure is time-consuming and also prone to subjectivity. These assessments are based on the physical cell appearance and suffer wide intra-observer variations. Therefore, better cell nucleus detection and counting techniques can be an important biomarker for the assessment of tumor cell proliferation in routine pathological investigations. In this paper, we introduce a deep learning-based detection model for cell classification on IHC stained histology images. These images are classified into binary classes to find the presence of Ki67 protein in cancer-affected nucleus regions. Our model maps the multi-scale pyramid features and saliency information from local bounded regions and predicts the bounding box coordinates through regression. Our method validates the impact of Ki67 expression across a cohort of four hundred histology images treated with localized ccRCC and compares our results with the existing state-of-the-art nucleus detection methods. The precision and recall scores of the proposed method are computed and compared on the clinical data sets. The experimental results demonstrate that our model improves the F1 score up to 86.3% and an average area under the Precision-Recall curve as 85.73%.
Abstract:In this work, we provide an industry research view for approaching the design, deployment, and operation of trustworthy Artificial Intelligence (AI) inference systems. Such systems provide customers with timely, informed, and customized inferences to aid their decision, while at the same time utilizing appropriate security protection mechanisms for AI models. Additionally, such systems should also use Privacy-Enhancing Technologies (PETs) to protect customers' data at any time. To approach the subject, we start by introducing trends in AI inference systems. We continue by elaborating on the relationship between Intellectual Property (IP) and private data protection in such systems. Regarding the protection mechanisms, we survey the security and privacy building blocks instrumental in designing, building, deploying, and operating private AI inference systems. For example, we highlight opportunities and challenges in AI systems using trusted execution environments combined with more recent advances in cryptographic techniques to protect data in use. Finally, we outline areas of further development that require the global collective attention of industry, academia, and government researchers to sustain the operation of trustworthy AI inference systems.