Abstract:This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on Github and the method is available as a service through the BisQue portal.
Abstract:In the field of computer vision, unsupervised learning for 2D object generation has advanced rapidly in the past few years. However, 3D object generation has not garnered the same attention or success as its predecessor. To facilitate novel progress at the intersection of computer vision and materials science, we propose a 3DMaterialGAN network that is capable of recognizing and synthesizing individual grains whose morphology conforms to a given 3D polycrystalline material microstructure. This Generative Adversarial Network (GAN) architecture yields complex 3D objects from probabilistic latent space vectors with no additional information from 2D rendered images. We show that this method performs comparably or better than state-of-the-art on benchmark annotated 3D datasets, while also being able to distinguish and generate objects that are not easily annotated, such as grain morphologies. The value of our algorithm is demonstrated with analysis on experimental real-world data, namely generating 3D grain structures found in a commercially relevant wrought titanium alloy, which were validated through statistical shape comparison. This framework lays the foundation for the recognition and synthesis of polycrystalline material microstructures, which are used in additive manufacturing, aerospace, and structural design applications.