Abstract:We explore the ability of GPT-4 to perform ad-hoc schema based information extraction from scientific literature. We assess specifically whether it can, with a basic prompting approach, replicate two existing material science datasets, given the manuscripts from which they were originally manually extracted. We employ materials scientists to perform a detailed manual error analysis to assess where the model struggles to faithfully extract the desired information, and draw on their insights to suggest research directions to address this broadly important task.
Abstract:Gathering 3D material microstructural information is time-consuming, expensive, and energy-intensive. Acquisition of 3D data has been accelerated by developments in serial sectioning instrument capabilities; however, for crystallographic information, the electron backscatter diffraction (EBSD) imaging modality remains rate limiting. We propose a physics-based efficient deep learning framework to reduce the time and cost of collecting 3D EBSD maps. Our framework uses a quaternion residual block self-attention network (QRBSA) to generate high-resolution 3D EBSD maps from sparsely sectioned EBSD maps. In QRBSA, quaternion-valued convolution effectively learns local relations in orientation space, while self-attention in the quaternion domain captures long-range correlations. We apply our framework to 3D data collected from commercially relevant titanium alloys, showing both qualitatively and quantitatively that our method can predict missing samples (EBSD information between sparsely sectioned mapping points) as compared to high-resolution ground truth 3D EBSD maps.
Abstract:In the field of computer vision, unsupervised learning for 2D object generation has advanced rapidly in the past few years. However, 3D object generation has not garnered the same attention or success as its predecessor. To facilitate novel progress at the intersection of computer vision and materials science, we propose a 3DMaterialGAN network that is capable of recognizing and synthesizing individual grains whose morphology conforms to a given 3D polycrystalline material microstructure. This Generative Adversarial Network (GAN) architecture yields complex 3D objects from probabilistic latent space vectors with no additional information from 2D rendered images. We show that this method performs comparably or better than state-of-the-art on benchmark annotated 3D datasets, while also being able to distinguish and generate objects that are not easily annotated, such as grain morphologies. The value of our algorithm is demonstrated with analysis on experimental real-world data, namely generating 3D grain structures found in a commercially relevant wrought titanium alloy, which were validated through statistical shape comparison. This framework lays the foundation for the recognition and synthesis of polycrystalline material microstructures, which are used in additive manufacturing, aerospace, and structural design applications.