Abstract:Modeling the dynamics of interacting entities using an evolving graph is an essential problem in fields such as financial networks and e-commerce. Traditional approaches focus primarily on pairwise interactions, limiting their ability to capture the complexity of real-world interactions involving multiple entities and their intricate relationship structures. This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs. This is done using a dynamic graph representation learning framework that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction based decoder to model the event's occurrence. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we use noise contrastive estimation to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
Abstract:Temporal Point Processes (TPP) play an important role in predicting or forecasting events. Although these problems have been studied extensively, predicting multiple simultaneously occurring events can be challenging. For instance, more often than not, a patient gets admitted to a hospital with multiple conditions at a time. Similarly people buy more than one stock and multiple news breaks out at the same time. Moreover, these events do not occur at discrete time intervals, and forecasting event sets in the continuous time domain remains an open problem. Naive approaches for extending the existing TPP models for solving this problem lead to dealing with an exponentially large number of events or ignoring set dependencies among events. In this work, we propose a scalable and efficient approach based on TPPs to solve this problem. Our proposed approach incorporates contextual event embeddings, temporal information, and domain features to model the temporal event sets. We demonstrate the effectiveness of our approach through extensive experiments on multiple datasets, showing that our model outperforms existing methods in terms of prediction metrics and computational efficiency. To the best of our knowledge, this is the first work that solves the problem of predicting event set intensities in the continuous time domain by using TPPs.
Abstract:Most reinforcement learning algorithms treat the context under which they operate as a stationary, isolated and undisturbed environment. However, in the real world, the environment is constantly changing due to a variety of external influences. To address this problem, we study Markov Decision Processes (MDP) under the influence of an external temporal process. We formalize this notion and discuss conditions under which the problem becomes tractable with suitable solutions. We propose a policy iteration algorithm to solve this problem and theoretically analyze its performance.
Abstract:Real-world systems are made of interacting entities that evolve with time. Creating models that can forecast interactions by learning the dynamics of entities is an important problem in numerous fields. Earlier works used dynamic graph models to achieve this. However, real-world interactions are more complex than pairwise, as they involve more than two entities, and many of these higher-order interactions have directional components. Examples of these can be seen in communication networks such as email exchanges that involve a sender, and multiple recipients, citation networks, where authors draw upon the work of others, and so on. In this paper, we solve the problem of higher-order directed interaction forecasting by proposing a deep neural network-based model \textit{Directed HyperNode Temporal Point Process} for directed hyperedge event forecasting, as hyperedge provides native framework for modeling relationships among the variable number of nodes. Our proposed technique reduces the search space of possible candidate hyperedges by first forecasting the nodes at which events will be observed, based on which it generates candidate hyperedges. To demonstrate the efficiency of our model, we curated four datasets and conducted an extensive empirical study. We believe that this is the first work that solves the problem of forecasting higher-order directional interactions.
Abstract:Spectral clustering is widely used in practice due to its flexibility, computational efficiency, and well-understood theoretical performance guarantees. Recently, spectral clustering has been studied to find balanced clusters under population-level constraints. These constraints are specified by additional information available in the form of auxiliary categorical node attributes. In this paper, we consider a scenario where these attributes may not be observable, but manifest as latent features of an auxiliary graph. Motivated by this, we study constrained spectral clustering with the aim of finding balanced clusters in a given \textit{similarity graph} $\mathcal{G}$, such that each individual is adequately represented with respect to an auxiliary graph $\mathcal{R}$ (we refer to this as representation graph). We propose an individual-level balancing constraint that formalizes this idea. Our work leads to an interesting stochastic block model that not only plants the given partitions in $\mathcal{G}$ but also plants the auxiliary information encoded in the representation graph $\mathcal{R}$. We develop unnormalized and normalized variants of spectral clustering in this setting. These algorithms use $\mathcal{R}$ to find clusters in $\mathcal{G}$ that approximately satisfy the proposed constraint. We also establish the first statistical consistency result for constrained spectral clustering under individual-level constraints for graphs sampled from the above-mentioned variant of the stochastic block model. Our experimental results corroborate our theoretical findings.
Abstract:Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state-of-the-art. We also propose a model for inferencing called Hierarchical Recurrent Path Encoder(HRPE). The inferencing models can be fine-tuned to be used across domains with less training data. Our approach does not require large domain-specific training data for querying on new knowledge graphs from different domains.
Abstract:Recently there has been a massive interest in extracting information from interaction data. Traditionally this is done by modeling it as pair-wise interaction at a particular time in a dynamic network. However, real-world interactions are seldom pair-wise; they can involve more than two nodes. In literature, these types of group interactions are modeled by hyperedges/hyperlinks. The existing works for hyperedge modeling focused only on static networks, and they cannot model the temporal evolution of nodes as they interact with other nodes. Also, they cannot answer temporal queries like which type of interaction will occur next and when the interaction will occur. To address these limitations, in this paper, we develop a temporal point process model for hyperlink prediction. Our proposed model uses dynamic representation techniques for nodes to model the evolution and uses this representation in a neural point process framework to make inferences. We evaluate our models on five real-world interaction data and show that our dynamic model has significant performance gain over the static model. Further, we also demonstrate the advantages of our technique over the pair-wise interaction modeling technique.
Abstract:Deep learning models have set benchmark results in various Natural Language Processing tasks. However, these models require an enormous amount of training data, which is infeasible in many practical problems. While various techniques like domain adaptation, fewshot learning techniques address this problem, we introduce a new technique of actively infusing external knowledge into learning to solve low data regime problems. We propose a technique called ActKnow that actively infuses knowledge from Knowledge Graphs (KG) based "on-demand" into learning for Question Answering (QA). By infusing world knowledge from Concept-Net, we show significant improvements on the ARC Challenge-set benchmark over purely text-based transformer models like RoBERTa in the low data regime. For example, by using only 20% training examples, we demonstrate a 4% improvement in the accuracy for both ARC-challenge and OpenBookQA, respectively.
Abstract:In this paper, we study the stochastic combinatorial multi-armed bandit problem under semi-bandit feedback. While much work has been done on algorithms that optimize the expected reward for linear as well as some general reward functions, we study a variant of the problem, where the objective is to be risk-aware. More specifically, we consider the problem of maximizing the Conditional Value-at-Risk (CVaR), a risk measure that takes into account only the worst-case rewards. We propose new algorithms that maximize the CVaR of the rewards obtained from the super arms of the combinatorial bandit for the two cases of Gaussian and bounded arm rewards. We further analyze these algorithms and provide regret bounds. We believe that our results provide the first theoretical insights into combinatorial semi-bandit problems in the risk-aware case.
Abstract:Lockdowns are one of the most effective measures for containing the spread of a pandemic. Unfortunately, they involve a heavy financial and emotional toll on the population that often outlasts the lockdown itself. This article argues in favor of ``local'' lockdowns, which are lockdowns focused on regions currently experiencing an outbreak. We propose a machine learning tool called CoviHawkes based on temporal point processes, called CoviHawkes that predicts the daily case counts for Covid-19 in India at the national, state, and district levels. Our short-term predictions ($<30$ days) may be helpful for policymakers in identifying regions where a local lockdown must be proactively imposed to arrest the spread of the virus. Our long-term predictions (up to a few months) simulate the progression of the pandemic under various lockdown conditions, thereby providing a noisy indicator for a potential third wave of cases in India. Extensive experimental results validate the performance of our tool at all levels.