Abstract:Large Language Models (LLMs) demand significant computational resources, making it essential to enhance their capabilities without retraining from scratch. A key challenge in this domain is \textit{catastrophic forgetting} (CF), which hampers performance during Continuous Pre-training (CPT) and Continuous Supervised Fine-Tuning (CSFT). We propose \textbf{Control LLM}, a novel approach that leverages parallel pre-trained and expanded transformer blocks, aligning their hidden-states through interpolation strategies This method effectively preserves performance on existing tasks while seamlessly integrating new knowledge. Extensive experiments demonstrate the effectiveness of Control LLM in both CPT and CSFT. On Llama3.1-8B-Instruct, it achieves significant improvements in mathematical reasoning ($+14.4\%$ on Math-Hard) and coding performance ($+10\%$ on MBPP-PLUS). On Llama3.1-8B, it enhances multilingual capabilities ($+10.6\%$ on C-Eval, $+6.8\%$ on CMMLU, and $+30.2\%$ on CMMLU-0shot-CoT). It surpasses existing methods and achieves SOTA among open-source models tuned from the same base model, using substantially less data and compute. Crucially, these gains are realized while preserving strong original capabilities, with minimal degradation ($<4.3\% \text{on MMLU}$) compared to $>35\%$ in open-source Math and Coding models. This approach has been successfully deployed in LinkedIn's GenAI-powered job seeker and Ads unit products. To support further research, we release the training and evaluation code (\url{https://github.com/linkedin/ControlLLM}) along with models trained on public datasets (\url{ https://huggingface.co/ControlLLM}) to the community.
Abstract:In difficult decision-making scenarios, it is common to have conflicting opinions among expert human decision-makers as there may not be a single right answer. Such decisions may be guided by different attributes that can be used to characterize an individual's decision. We introduce a novel dataset for medical triage decision-making, labeled with a set of decision-maker attributes (DMAs). This dataset consists of 62 scenarios, covering six different DMAs, including ethical principles such as fairness and moral desert. We present a novel software framework for human-aligned decision-making by utilizing these DMAs, paving the way for trustworthy AI with better guardrails. Specifically, we demonstrate how large language models (LLMs) can serve as ethical decision-makers, and how their decisions can be aligned to different DMAs using zero-shot prompting. Our experiments focus on different open-source models with varying sizes and training techniques, such as Falcon, Mistral, and Llama 2. Finally, we also introduce a new form of weighted self-consistency that improves the overall quantified performance. Our results provide new research directions in the use of LLMs as alignable decision-makers. The dataset and open-source software are publicly available at: https://github.com/ITM-Kitware/llm-alignable-dm.