Abstract:In this work, we share three insights for achieving state-of-the-art aesthetic quality in text-to-image generative models. We focus on three critical aspects for model improvement: enhancing color and contrast, improving generation across multiple aspect ratios, and improving human-centric fine details. First, we delve into the significance of the noise schedule in training a diffusion model, demonstrating its profound impact on realism and visual fidelity. Second, we address the challenge of accommodating various aspect ratios in image generation, emphasizing the importance of preparing a balanced bucketed dataset. Lastly, we investigate the crucial role of aligning model outputs with human preferences, ensuring that generated images resonate with human perceptual expectations. Through extensive analysis and experiments, Playground v2.5 demonstrates state-of-the-art performance in terms of aesthetic quality under various conditions and aspect ratios, outperforming both widely-used open-source models like SDXL and Playground v2, and closed-source commercial systems such as DALLE 3 and Midjourney v5.2. Our model is open-source, and we hope the development of Playground v2.5 provides valuable guidelines for researchers aiming to elevate the aesthetic quality of diffusion-based image generation models.
Abstract:Recent advances in cross-lingual word embeddings have primarily relied on mapping-based methods, which project pretrained word embeddings from different languages into a shared space through a linear transformation. However, these approaches assume word embedding spaces are isomorphic between different languages, which has been shown not to hold in practice (S{\o}gaard et al., 2018), and fundamentally limits their performance. This motivates investigating joint learning methods which can overcome this impediment, by simultaneously learning embeddings across languages via a cross-lingual term in the training objective. Given the abundance of parallel data available (Tiedemann, 2012), we propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word and sentence representations. Our approach significantly improves cross-lingual sentence retrieval performance over all other approaches, as well as convincingly outscores mapping methods while maintaining parity with jointly trained methods on word-translation. It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task, requiring far fewer computational resources for training and inference. As an additional advantage, our bilingual method also improves the quality of monolingual word vectors despite training on much smaller datasets. We make our code and models publicly available.