Institute of Signal Processing
Abstract:This paper develops a novel mathematical framework for collaborative learning by means of geometrically inspired kernel machines which includes statements on the bounds of generalisation and approximation errors, and sample complexity. For classification problems, this approach allows us to learn bounded geometric structures around given data points and hence solve the global model learning problem in an efficient way by exploiting convexity properties of the related optimisation problem in a Reproducing Kernel Hilbert Space (RKHS). In this way, we can reduce classification problems to determining the closest bounded geometric structure from a given data point. Further advantages that come with our solution is that our approach does not require clients to perform multiple epochs of local optimisation using stochastic gradient descent, nor require rounds of communication between client/server for optimising the global model. We highlight that numerous experiments have shown that the proposed method is a competitive alternative to the state-of-the-art.
Abstract:This study provides Urdu poetry generated using different deep-learning techniques and algorithms. The data was collected through the Rekhta website, containing 1341 text files with several couplets. The data on poetry was not from any specific genre or poet. Instead, it was a collection of mixed Urdu poems and Ghazals. Different deep learning techniques, such as the model applied Long Short-term Memory Networks (LSTM) and Gated Recurrent Unit (GRU), have been used. Natural Language Processing (NLP) may be used in machine learning to understand, analyze, and generate a language humans may use and understand. Much work has been done on generating poetry for different languages using different techniques. The collection and use of data were also different for different researchers. The primary purpose of this project is to provide a model that generates Urdu poems by using data completely, not by sampling data. Also, this may generate poems in pure Urdu, not Roman Urdu, as in the base paper. The results have shown good accuracy in the poems generated by the model.
Abstract:This paper presents duality between probability distributions and utility functions.