Abstract:The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.
Abstract:Object-centric architectures usually apply a differentiable module to the entire feature map to decompose it into sets of entity representations called slots. Some of these methods structurally resemble clustering algorithms, where the cluster's center in latent space serves as a slot representation. Slot Attention is an example of such a method, acting as a learnable analog of the soft k-means algorithm. Our work employs a learnable clustering method based on the Gaussian Mixture Model. Unlike other approaches, we represent slots not only as centers of clusters but also incorporate information about the distance between clusters and assigned vectors, leading to more expressive slot representations. Our experiments demonstrate that using this approach instead of Slot Attention improves performance in object-centric scenarios, achieving state-of-the-art results in the set property prediction task.
Abstract:Originally developed for natural language problems, transformer models have recently been widely used in offline reinforcement learning tasks. This is because the agent's history can be represented as a sequence, and the whole task can be reduced to the sequence modeling task. However, the quadratic complexity of the transformer operation limits the potential increase in context. Therefore, different versions of the memory mechanism are used to work with long sequences in a natural language. This paper proposes the Recurrent Memory Decision Transformer (RMDT), a model that uses a recurrent memory mechanism for reinforcement learning problems. We conduct thorough experiments on Atari games and MuJoCo control problems and show that our proposed model is significantly superior to its counterparts without the recurrent memory mechanism on Atari games. We also carefully study the effect of memory on the performance of the proposed model. These findings shed light on the potential of incorporating recurrent memory mechanisms to improve the performance of large-scale transformer models in offline reinforcement learning tasks. The Recurrent Memory Decision Transformer code is publicly available in the repository \url{https://anonymous.4open.science/r/RMDT-4FE4}.