Abstract:As robots increasingly become part of shared human spaces, their movements must transcend basic functionality by incorporating expressive qualities to enhance engagement and communication. This paper introduces a movement-centered design pedagogy designed to support engineers in creating expressive robotic arm movements. Through a hands-on interactive workshop informed by interdisciplinary methodologies, participants explored various creative possibilities, generating valuable insights into expressive motion design. The iterative approach proposed integrates analytical frameworks from dance, enabling designers to examine motion through dynamic and embodied dimensions. A custom manual remote controller facilitates interactive, real-time manipulation of the robotic arm, while dedicated animation software supports visualization, detailed motion sequencing, and precise parameter control. Qualitative analysis of this interactive design process reveals that the proposed "toolbox" effectively bridges the gap between human intent and robotic expressiveness resulting in more intuitive and engaging expressive robotic arm movements.
Abstract:Artistic performances involving robotic systems present unique technical challenges akin to those encountered in other field deployments. In this paper, we delve into the orchestration of robotic artistic performances, focusing on the complexities inherent in communication protocols and localization methods. Through our case studies and experimental insights, we demonstrate the breadth of technical requirements for this type of deployment, and, most importantly, the significant contributions of working closely with non-experts.