Abstract:Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models , including GPT4, Claude3, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.
Abstract:Weather forecasting remains a crucial yet challenging domain, where recently developed models based on deep learning (DL) have approached the performance of traditional numerical weather prediction (NWP) models. However, these DL models, often complex and resource-intensive, face limitations in flexibility post-training and in incorporating NWP predictions, leading to reliability concerns due to potential unphysical predictions. In response, we introduce a novel method that applies diffusion models (DM) for weather forecasting. In particular, our method can achieve both direct and iterative forecasting with the same modeling framework. Our model is not only capable of generating forecasts independently but also uniquely allows for the integration of NWP predictions, even with varying lead times, during its sampling process. The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community. Additionally, incorporating persistence and climatology data further enhances our model's long-term forecasting stability. Our empirical findings demonstrate the feasibility and generalizability of this approach, suggesting a promising direction for future, more sophisticated diffusion models without the need for retraining.