Abstract:Visual object navigation using learning methods is one of the key tasks in mobile robotics. This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment. It is based on a neural network method that adjusts the weights of the segmentation model with backpropagation of the predicted fusion loss values during inference on a regular (backward) or delayed (forward) image sequence. We have implemented this representation into a full-fledged navigation approach called SkillTron, which can select robot skills from end-to-end policies based on reinforcement learning and classic map-based planning methods. The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation. We conducted intensive experiments with the proposed approach in the Habitat environment, which showed a significant superiority in navigation quality metrics compared to state-of-the-art approaches. The developed code and used custom datasets are publicly available at github.com/AIRI-Institute/skill-fusion.
Abstract:This paper presents an adaptive transformer model named SegmATRon for embodied image semantic segmentation. Its distinctive feature is the adaptation of model weights during inference on several images using a hybrid multicomponent loss function. We studied this model on datasets collected in the photorealistic Habitat and the synthetic AI2-THOR Simulators. We showed that obtaining additional images using the agent's actions in an indoor environment can improve the quality of semantic segmentation. The code of the proposed approach and datasets are publicly available at https://github.com/wingrune/SegmATRon.
Abstract:We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment and loop detection in simultaneous localization and mapping. The loop detection sub-task is especially relevant when a robot with an on-board RGB-D camera can drive past the same place (``Point") at different angles. The dataset is based on the popular Habitat simulator, in which it is possible to generate photorealistic indoor scenes using both own sensor data and open datasets, such as Matterport3D. To study the main stages of solving the place recognition problem on the HPointLoc dataset, we proposed a new modular approach named as PNTR. It first performs an image retrieval with the Patch-NetVLAD method, then extracts keypoints and matches them using R2D2, LoFTR or SuperPoint with SuperGlue, and finally performs a camera pose optimization step with TEASER++. Such a solution to the place recognition problem has not been previously studied in existing publications. The PNTR approach has shown the best quality metrics on the HPointLoc dataset and has a high potential for real use in localization systems for unmanned vehicles. The proposed dataset and framework are publicly available: https://github.com/metra4ok/HPointLoc.