Abstract:Recent developments in generative AI have shone a spotlight on high-performance synthetic text generation technologies. The now wide availability and ease of use of such models highlights the urgent need to provide equally powerful technologies capable of identifying synthetic text. With this in mind, we draw inspiration from psychological studies which suggest that people can be driven by emotion and encode emotion in the text they compose. We hypothesize that pretrained language models (PLMs) have an affective deficit because they lack such an emotional driver when generating text and consequently may generate synthetic text which has affective incoherence i.e. lacking the kind of emotional coherence present in human-authored text. We subsequently develop an emotionally aware detector by fine-tuning a PLM on emotion. Experiment results indicate that our emotionally-aware detector achieves improvements across a range of synthetic text generators, various sized models, datasets, and domains. Finally, we compare our emotionally-aware synthetic text detector to ChatGPT in the task of identification of its own output and show substantial gains, reinforcing the potential of emotion as a signal to identify synthetic text. Code, models, and datasets are available at https: //github.com/alanagiasi/emoPLMsynth
Abstract:The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many Natural Language Processing tasks. Over 120 monolingual BERT models covering over 50 languages have been released, as well as a multilingual model trained on 104 languages. We introduce, gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We release gaBERT and related code to the community.