Abstract:Human pose estimation faces hurdles in real-world applications due to factors like lighting changes, occlusions, and cluttered environments. We introduce a unique RGB-Thermal Nearly Paired and Annotated 2D Pose Dataset, comprising over 2,400 high-quality LWIR (thermal) images. Each image is meticulously annotated with 2D human poses, offering a valuable resource for researchers and practitioners. This dataset, captured from seven actors performing diverse everyday activities like sitting, eating, and walking, facilitates pose estimation on occlusion and other challenging scenarios. We benchmark state-of-the-art pose estimation methods on the dataset to showcase its potential, establishing a strong baseline for future research. Our results demonstrate the dataset's effectiveness in promoting advancements in pose estimation for various applications, including surveillance, healthcare, and sports analytics. The dataset and code are available at https://github.com/avinres/LWIRPOSE
Abstract:Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-based optimization algorithms respectively. Though they have been widely used for single-objective optimization since their inception, they suffer from premature convergence. Even though the hybrids of GSA and PSO perform much better, the problem remains. Hence, to solve this issue we have proposed a fuzzy mutation model for two hybrid versions of PSO and GSA - Gravitational Particle Swarm (GPS) and PSOGSA. The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA). The mutation operator is based on a fuzzy model where the probability of mutation has been calculated based on the closeness of particle to population centroid and improvement in the particle value. We have evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multi-modal and multi-modal with fixed dimension). The experimental outcome shows that our proposed model outperforms their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52%) and MPSOGSA outperforms PSOGSA 17 times out of 23 (73.91 %). We have also compared our results against those of recent optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.
Abstract:Understanding a visual scene incorporates objects, relationships, and context. Traditional methods working on an image mostly focus on object detection and fail to capture the relationship between the objects. Relationships can give rich semantic information about the objects in a scene. The context can be conducive to comprehending an image since it will help us to perceive the relation between the objects and thus, give us a deeper insight into the image. Through this idea, our project delivers a model that focuses on finding the context present in an image by representing the image as a graph, where the nodes will the objects and edges will be the relation between them. The context is found using the visual and semantic cues which are further concatenated and given to the Support Vector Machines (SVM) to detect the relation between two objects. This presents us with the context of the image which can be further used in applications such as similar image retrieval, image captioning, or story generation.
Abstract:This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy inference systems (FIS) using five well known computational frameworks: genetic-fuzzy systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and multi-objective fuzzy systems (MFS), which is in view that some of them are linked to each other. The heuristic design of GFS uses evolutionary algorithms for optimizing both Mamdani-type and Takagi-Sugeno-Kang-type fuzzy systems. Whereas, the NFS combines the FIS with neural network learning systems to improve the approximation ability. An HFS combines two or more low-dimensional fuzzy logic units in a hierarchical design to overcome the curse of dimensionality. An EFS solves the data streaming issues by evolving the system incrementally, and an MFS solves the multi-objective trade-offs like the simultaneous maximization of both interpretability and accuracy. This paper offers a synthesis of these dimensions and explores their potentials, challenges, and opportunities in FIS research. This review also examines the complex relations among these dimensions and the possibilities of combining one or more computational frameworks adding another dimension: deep fuzzy systems.
Abstract:The campaign against drug abuse is fought by all countries, most notably on ATS drugs. The technical limitations of the current test kits to detect new brand of ATS drugs present a challenge to law enforcement authorities and forensic laboratories. Meanwhile, new molecular imaging devices which allowed mankind to characterize the physical 3D molecular structure have been recently introduced, and it can be used to remedy the limitations of existing drug test kits. Thus, a new type of 3D molecular structure representation technique should be developed to cater the 3D molecular structure acquired physically using these molecular imaging devices. One of the applications of image processing methods to represent a 3D image is 3D moments, and this study formulates a new 3D moments technique, namely 3D Hahn moments, to represent the 3D molecular structure of ATS drugs. The performance of the proposed technique was analysed using drug chemical structures obtained from UNODC for the ATS drugs, while non-ATS drugs are obtained randomly from ChemSpider database. The evaluation shows the technique is qualified to be further explored in the future works to be fully compatible with ATS drug identification domain.
Abstract:The performance of the meta-heuristic algorithms often depends on their parameter settings. Appropriate tuning of the underlying parameters can drastically improve the performance of a meta-heuristic. The Ant Colony Optimization (ACO), a population based meta-heuristic algorithm inspired by the foraging behavior of the ants, is no different. Fundamentally, the ACO depends on the construction of new solutions, variable by variable basis using Gaussian sampling of the selected variables from an archive of solutions. A comprehensive performance analysis of the underlying parameters such as: selection strategy, distance measure metric and pheromone evaporation rate of the ACO suggests that the Roulette Wheel Selection strategy enhances the performance of the ACO due to its ability to provide non-uniformity and adequate diversity in the selection of a solution. On the other hand, the Squared Euclidean distance-measure metric offers better performance than other distance-measure metrics. It is observed from the analysis that the ACO is sensitive towards the evaporation rate. Experimental analysis between classical ACO and other meta-heuristic suggested that the performance of the well-tuned ACO surpasses its counterparts.
Abstract:Optimization of neural network (NN) significantly influenced by the transfer function used in its active nodes. It has been observed that the homogeneity in the activation nodes does not provide the best solution. Therefore, the customizable transfer functions whose underlying parameters are subjected to optimization were used to provide heterogeneity to NN. For the experimental purpose, a meta-heuristic framework using a combined genotype representation of connection weights and transfer function parameter was used. The performance of adaptive Logistic, Tangent-hyperbolic, Gaussian and Beta functions were analyzed. In present research work, concise comparisons between different transfer function and between the NN optimization algorithms are presented. The comprehensive analysis of the results obtained over the benchmark dataset suggests that the Artificial Bee Colony with adaptive transfer function provides the best results in terms of classification accuracy over the particle swarm optimization and differential evolution.
Abstract:This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum treelike structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (a low complexity model) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree's parameters. In the derived tree, each node acquires a different input's combination, where the evolutionary process governs the input's combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree's structural optimization that accepts inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by the most of other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selection.
Abstract:In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules.
Abstract:Machine learning algorithms are inherently multiobjective in nature, where approximation error minimization and model's complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population.