Abstract:Machine learning (ML) offers a promising solution to pathloss prediction. However, its effectiveness can be degraded by the limited availability of data. To alleviate these challenges, this paper introduces a novel simulation-enhanced data augmentation method for ML pathloss prediction. Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets. These datasets were collected through an extensive measurement campaign in different environments, including farms, hilly terrains, and residential areas. This comprehensive data collection provides vital ground truth for model training. A set of channel features was engineered, including geographical attributes derived from LiDAR datasets. These features were then used to train our prediction model, incorporating the highly efficient and robust gradient boosting ML algorithm, CatBoost. The integration of synthetic data, as demonstrated in our study, significantly improves the generalizability of the model in different environments, achieving a remarkable improvement of approximately 12dB in terms of mean absolute error for the best-case scenario. Moreover, our analysis reveals that even a small fraction of measurements added to the simulation training set, with proper data balance, can significantly enhance the model's performance.
Abstract:Deep learning based automatic modulation classification (AMC) has received significant attention owing to its potential applications in both military and civilian use cases. Recently, data-driven subsampling techniques have been utilized to overcome the challenges associated with computational complexity and training time for AMC. Beyond these direct advantages of data-driven subsampling, these methods also have regularizing properties that may improve the adversarial robustness of the modulation classifier. In this paper, we investigate the effects of an adversarial attack on an AMC system that employs deep learning models both for AMC and for subsampling. Our analysis shows that subsampling itself is an effective deterrent to adversarial attacks. We also uncover the most efficient subsampling strategy when an adversarial attack on both the classifier and the subsampler is anticipated.
Abstract:In this paper, we propose a framework for predicting frame errors in the collaborative spectrally congested wireless environments of the DARPA Spectrum Collaboration Challenge (SC2) via a recently collected dataset. We employ distributed deep edge learning that is shared among edge nodes and a central cloud. Using this close-to-practice dataset, we find that widely used federated learning approaches, specially those that are privacy preserving, are worse than local training for a wide range of settings. We hence utilize the synthetic minority oversampling technique to maintain privacy via avoiding the transfer of local data to the cloud, and utilize knowledge distillation with an aim to benefit from high cloud computing and storage capabilities. The proposed framework achieves overall better performance than both local and federated training approaches, while being robust against catastrophic failures as well as challenging channel conditions that result in high frame error rates.