Abstract:Generative Artificial Intelligence (AI) is integrated into everyday technology, including news, education, and social media. AI has further pervaded private conversations as conversational partners, auto-completion, and response suggestions. As social media becomes young people's main method of peer support exchange, we need to understand when and how AI can facilitate and assist in such exchanges in a beneficial, safe, and socially appropriate way. We asked 622 young people to complete an online survey and evaluate blinded human- and AI-generated responses to help-seeking messages. We found that participants preferred the AI-generated response to situations about relationships, self-expression, and physical health. However, when addressing a sensitive topic, like suicidal thoughts, young people preferred the human response. We also discuss the role of training in online peer support exchange and its implications for supporting young people's well-being. Disclaimer: This paper includes sensitive topics, including suicide ideation. Reader discretion is advised.
Abstract:We describe Howl, an open-source wake word detection toolkit with native support for open speech datasets, like Mozilla Common Voice and Google Speech Commands. We report benchmark results on Speech Commands and our own freely available wake word detection dataset, built from MCV. We operationalize our system for Firefox Voice, a plugin enabling speech interactivity for the Firefox web browser. Howl represents, to the best of our knowledge, the first fully productionized yet open-source wake word detection toolkit with a web browser deployment target. Our codebase is at https://github.com/castorini/howl.
Abstract:We propose a new deep learning algorithm for multiple microtubule (MT) segmentation in time-lapse images using the recurrent attention. Segmentation results from each pair of succeeding frames are being fed into a Hungarian algorithm to assign correspondences among MTs to generate a distinct path through the frames. Based on the obtained trajectories, we calculate MT velocities. Results of this work is expected to help biologists to characterize MT behaviors as well as their potential interactions. To validate our technique, we first use the statistics derived from the real time-lapse series of MT gliding assays to produce a large set of simulated data. We employ this dataset to train our network and optimize its hyperparameters. Then, we utilize the trained model to initialize the network while learning about the real data. Our experimental results show that the proposed algorithm improves the precision for MT instance velocity estimation to 71.3% from the baseline result (29.3%). We also demonstrate how the injection of temporal information into our network can reduce the false negative rates from 67.8% (baseline) down to 28.7% (proposed).