Abstract:Virtual reality (VR) presents immersive opportunities across many applications, yet the inherent risk of developing cybersickness during interaction can severely reduce enjoyment and platform adoption. Cybersickness is marked by symptoms such as dizziness and nausea, which previous work primarily assessed via subjective post-immersion questionnaires and motion-restricted controlled setups. In this paper, we investigate the \emph{dynamic nature} of cybersickness while users experience and freely interact in VR. We propose a novel method to \emph{continuously} identify and quantitatively gauge cybersickness levels from users' \emph{passively monitored} electroencephalography (EEG) and head motion signals. Our method estimates multitaper spectrums from EEG, integrating specialized EEG processing techniques to counter motion artifacts, and, thus, tracks cybersickness levels in real-time. Unlike previous approaches, our method requires no user-specific calibration or personalization for detecting cybersickness. Our work addresses the considerable challenge of reproducibility and subjectivity in cybersickness research.
Abstract:Ranking-based loss functions, such as Average Precision Loss and Rank&Sort Loss, outperform widely used score-based losses in object detection. These loss functions better align with the evaluation criteria, have fewer hyperparameters, and offer robustness against the imbalance between positive and negative classes. However, they require pairwise comparisons among $P$ positive and $N$ negative predictions, introducing a time complexity of $\mathcal{O}(PN)$, which is prohibitive since $N$ is often large (e.g., $10^8$ in ATSS). Despite their advantages, the widespread adoption of ranking-based losses has been hindered by their high time and space complexities. In this paper, we focus on improving the efficiency of ranking-based loss functions. To this end, we propose Bucketed Ranking-based Losses which group negative predictions into $B$ buckets ($B \ll N$) in order to reduce the number of pairwise comparisons so that time complexity can be reduced. Our method enhances the time complexity, reducing it to $\mathcal{O}(\max (N \log(N), P^2))$. To validate our method and show its generality, we conducted experiments on 2 different tasks, 3 different datasets, 7 different detectors. We show that Bucketed Ranking-based (BR) Losses yield the same accuracy with the unbucketed versions and provide $2\times$ faster training on average. We also train, for the first time, transformer-based object detectors using ranking-based losses, thanks to the efficiency of our BR. When we train CoDETR, a state-of-the-art transformer-based object detector, using our BR Loss, we consistently outperform its original results over several different backbones. Code is available at https://github.com/blisgard/BucketedRankingBasedLosses