Abstract:Implicit Neural Representations (INRs) have recently gained attention as a powerful approach for continuously representing signals such as images, videos, and 3D shapes using multilayer perceptrons (MLPs). However, MLPs are known to exhibit a low-frequency bias, limiting their ability to capture high-frequency details accurately. This limitation is typically addressed by incorporating high-frequency input embeddings or specialized activation layers. In this work, we demonstrate that these embeddings and activations are often configured with hyperparameters that perform well on average but are suboptimal for specific input signals under consideration, necessitating a costly grid search to identify optimal settings. Our key observation is that the initial frequency spectrum of an untrained model's output correlates strongly with the model's eventual performance on a given target signal. Leveraging this insight, we propose frequency shifting (or FreSh), a method that selects embedding hyperparameters to align the frequency spectrum of the model's initial output with that of the target signal. We show that this simple initialization technique improves performance across various neural representation methods and tasks, achieving results comparable to extensive hyperparameter sweeps but with only marginal computational overhead compared to training a single model with default hyperparameters.
Abstract:Recently, generative models for 3D objects are gaining much popularity in VR and augmented reality applications. Training such models using standard 3D representations, like voxels or point clouds, is challenging and requires complex tools for proper color rendering. In order to overcome this limitation, Neural Radiance Fields (NeRFs) offer a state-of-the-art quality in synthesizing novel views of complex 3D scenes from a small subset of 2D images. In the paper, we propose a generative model called HyperNeRFGAN, which uses hypernetworks paradigm to produce 3D objects represented by NeRF. Our GAN architecture leverages a hypernetwork paradigm to transfer gaussian noise into weights of NeRF model. The model is further used to render 2D novel views, and a classical 2D discriminator is utilized for training the entire GAN-based structure. Our architecture produces 2D images, but we use 3D-aware NeRF representation, which forces the model to produce correct 3D objects. The advantage of the model over existing approaches is that it produces a dedicated NeRF representation for the object without sharing some global parameters of the rendering component. We show the superiority of our approach compared to reference baselines on three challenging datasets from various domains.