Abstract:Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborative robots can tackle that can also highly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibility and scalability. In this work, we introduce a multi-agent multi-machine tending learning framework by mobile robots based on Multi-agent Reinforcement Learning (MARL) techniques with the design of a suitable observation and reward. Moreover, an attention-based encoding mechanism is developed and integrated into Multi-agent Proximal Policy Optimization (MAPPO) algorithm to boost its performance for machine tending scenarios. Our model (AB-MAPPO) outperformed MAPPO in this new challenging scenario in terms of task success, safety, and resources utilization. Furthermore, we provided an extensive ablation study to support our various design decisions.
Abstract:The drone industry is diversifying and the number of pilots increases rapidly. In this context, flight schools need adapted tools to train pilots, most importantly with regard to their own awareness of their physiological and cognitive limits. In civil and military aviation, pilots can train themselves on realistic simulators to tune their reaction and reflexes, but also to gather data on their piloting behavior and physiological states. It helps them to improve their performances. Opposed to cockpit scenarios, drone teleoperation is conducted outdoor in the field, thus with only limited potential from desktop simulation training. This work aims to provide a solution to gather pilots behavior out in the field and help them increase their performance. We combined advance object detection from a frontal camera to gaze and heart-rate variability measurements. We observed pilots and analyze their behavior over three flight challenges. We believe this tool can support pilots both in their training and in their regular flight tasks. A demonstration video is available on https://www.youtube.com/watch?v=eePhjd2qNiI