Abstract:We seek to elevate the planning capabilities of Large Language Models (LLMs)investigating four main directions. First, we construct a comprehensive benchmark suite encompassing both classical planning domains and natural language scenarios. This suite includes algorithms to generate instances with varying levels of difficulty, allowing for rigorous and systematic evaluation of LLM performance. Second, we investigate the use of in-context learning (ICL) to enhance LLM planning, exploring the direct relationship between increased context length and improved planning performance. Third, we demonstrate the positive impact of fine-tuning LLMs on optimal planning paths, as well as the effectiveness of incorporating model-driven search procedures. Finally, we investigate the performance of the proposed methods in out-of-distribution scenarios, assessing the ability to generalize to novel and unseen planning challenges.
Abstract:We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.