Abstract:This paper addresses the escalating challenge of redundant data transmission in networks. The surge in traffic has strained backhaul links and backbone networks, prompting the exploration of caching solutions at the edge router. Existing work primarily relies on Markov Decision Processes (MDP) for caching issues, assuming fixed-time interval decisions; however, real-world scenarios involve random request arrivals, and despite the critical role of various file characteristics in determining an optimal caching policy, none of the related existing work considers all these file characteristics in forming a caching policy. In this paper, first, we formulate the caching problem using a semi-Markov Decision Process (SMDP) to accommodate the continuous-time nature of real-world scenarios allowing for caching decisions at random times upon file requests. Then, we propose a double deep Q-learning-based caching approach that comprehensively accounts for file features such as lifetime, size, and importance. Simulation results demonstrate the superior performance of our approach compared to a recent Deep Reinforcement Learning-based method. Furthermore, we extend our work to include a Transfer Learning (TL) approach to account for changes in file request rates in the SMDP framework. The proposed TL approach exhibits fast convergence, even in scenarios with increased differences in request rates between source and target domains, presenting a promising solution to the dynamic challenges of caching in real-world environments.
Abstract:With the rising adoption of Machine Learning across the domains like banking, pharmaceutical, ed-tech, etc, it has become utmost important to adopt responsible AI methods to ensure models are not unfairly discriminating against any group. Given the lack of clean training data, generative adversarial techniques are preferred to generate synthetic data with several state-of-the-art architectures readily available across various domains from unstructured data such as text, images to structured datasets modelling fraud detection and many more. These techniques overcome several challenges such as class imbalance, limited training data, restricted access to data due to privacy issues. Existing work focusing on generating fair data either works for a certain GAN architecture or is very difficult to tune across the GANs. In this paper, we propose a pipeline to generate fairer synthetic data independent of the GAN architecture. The proposed paper utilizes a pre-processing algorithm to identify and remove bias inducing samples. In particular, we claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples. Our experimental evaluation on two open-source datasets demonstrates how the proposed pipeline is generating fair data along with improved performance in some cases.