Abstract:The exponential growth in the usage of Internet of Things in daily life has caused immense increase in the generation of time series data. Smart homes is one such domain where bulk of data is being generated and anomaly detection is one of the many challenges addressed by researchers in recent years. Contextual anomaly is a kind of anomaly that may show deviation from the normal pattern like point or sequence anomalies, but it also requires prior knowledge about the data domain and the actions that caused the deviation. Recent studies based on Recurrent Neural Networks (RNN) have demonstrated strong performance in anomaly detection. This study explores the impact of automatically tuned hyperparamteres on Unsupervised Online Contextual Anomaly Detection (UoCAD) approach by proposing UoCAD with Optimised Hyperparamnters (UoCAD-OH). UoCAD-OH conducts hyperparameter optimisation on Bi-LSTM model in an offline phase and uses the fine-tuned hyperparameters to detect anomalies during the online phase. The experiments involve evaluating the proposed framework on two smart home air quality datasets containing contextual anomalies. The evaluation metrics used are Precision, Recall, and F1 score.
Abstract:This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different teams. To drive further development of efficient face recognition models, the submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size. The evaluation of submissions is extended to bias, cross-quality, and large-scale recognition benchmarks. Overall, the paper gives an overview of the achieved performance values of the submitted solutions as well as a diverse set of baselines. The submitted solutions use small, efficient network architectures to reduce the computational cost, some solutions apply model quantization. An outlook on possible techniques that are underrepresented in current solutions is given as well.