Real-world image super-resolution (SR) tasks often do not have paired datasets limiting the application of supervised techniques. As a result, the tasks are usually approached by unpaired techniques based on Generative Adversarial Networks (GANs) which yield complex training losses with several regularization terms such as content and identity losses. We theoretically investigate the optimization problems which arise in such models and find two surprising observations. First, the learned SR map is always an optimal transport (OT) map. Second, we empirically show that the learned map is biased, i.e., it may not actually transform the distribution of low-resolution images to high-resolution images. Inspired by these findings, we propose an algorithm for unpaired SR which learns an unbiased OT map for the perceptual transport cost. Unlike existing GAN-based alternatives, our algorithm has a simple optimization objective reducing the neccesity to perform complex hyperparameter selection and use additional regularizations. At the same time, it provides nearly state-of-the-art performance on the large-scale unpaired AIM-19 dataset.