Thin film deposition is an essential step in the semiconductor process. During preparation or loading, the substrate is exposed to the air unavoidably, which has motivated studies of the process control to remove the surface oxide before thin film deposition. Optimizing the deoxidation process in molecular beam epitaxy (MBE) for a random substrate is a multidimensional challenge and sometimes controversial. Due to variations in semiconductor materials and growth processes, the determination of substrate deoxidation temperature is highly dependent on the grower's expertise; the same substrate may yield inconsistent results when evaluated by different growers. Here, we employ a machine learning (ML) hybrid convolution and vision transformer (CNN-ViT) model. This model utilizes reflection high-energy electron diffraction (RHEED) video as input to determine the deoxidation status of the substrate as output, enabling automated substrate deoxidation under a controlled architecture. This also extends to the successful application of deoxidation processes on other substrates. Furthermore, we showcase the potential of models trained on data from a single MBE equipment to achieve high-accuracy deployment on other equipment. In contrast to traditional methods, our approach holds exceptional practical value. It standardizes deoxidation temperatures across various equipment and substrate materials, advancing the standardization research process in semiconductor preparation, a significant milestone in thin film growth technology. The concepts and methods demonstrated in this work are anticipated to revolutionize semiconductor manufacturing in optoelectronics and microelectronics industries by applying them to diverse material growth processes.