The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. However, the impact of backdoor attacks on multilingual models remains under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data in one or two languages can affect the outputs in languages whose instruction-tuning data was not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5, BLOOM, and GPT-3.5-turbo, with high attack success rates, surpassing 95% in several languages across various scenarios. Alarmingly, our findings also indicate that larger models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments show that triggers can still work even after paraphrasing, and the backdoor mechanism proves highly effective in cross-lingual response settings across 25 languages, achieving an average attack success rate of 50%. Our study aims to highlight the vulnerabilities and significant security risks present in current multilingual LLMs, underscoring the emergent need for targeted security measures.