https://github.com/tsinghua-fib-lab/KSTDiff-Urban-flow-generation.
Although generative AI has been successful in many areas, its ability to model geospatial data is still underexplored. Urban flow, a typical kind of geospatial data, is critical for a wide range of urban applications. Existing studies mostly focus on predictive modeling of urban flow that predicts the future flow based on historical flow data, which may be unavailable in data-sparse areas or newly planned regions. Some other studies aim to predict OD flow among regions but they fail to model dynamic changes of urban flow over time. In this work, we study a new problem of urban flow generation that generates dynamic urban flow for regions without historical flow data. To capture the effect of multiple factors on urban flow, such as region features and urban environment, we employ diffusion model to generate urban flow for regions under different conditions. We first construct an urban knowledge graph (UKG) to model the urban environment and relationships between regions, based on which we design a knowledge-enhanced spatio-temporal diffusion model (KSTDiff) to generate urban flow for each region. Specifically, to accurately generate urban flow for regions with different flow volumes, we design a novel diffusion process guided by a volume estimator, which is learnable and customized for each region. Moreover, we propose a knowledge-enhanced denoising network to capture the spatio-temporal dependencies of urban flow as well as the impact of urban environment in the denoising process. Extensive experiments on four real-world datasets validate the superiority of our model over state-of-the-art baselines in urban flow generation. Further in-depth studies demonstrate the utility of generated urban flow data and the ability of our model for long-term flow generation and urban flow prediction. Our code is released at: