https://github.com/MmmingS/Granular-DQ.git}.
Dynamic quantization has attracted rising attention in image super-resolution (SR) as it expands the potential of heavy SR models onto mobile devices while preserving competitive performance. Existing methods explore layer-to-bit configuration upon varying local regions, adaptively allocating the bit to each layer and patch. Despite the benefits, they still fall short in the trade-off of SR accuracy and quantization efficiency. Apart from this, adapting the quantization level for each layer individually can disturb the original inter-layer relationships, thus diminishing the representation capability of quantized models. In this work, we propose Granular-DQ, which capitalizes on the intrinsic characteristics of images while dispensing with the previous consideration for layer sensitivity in quantization. Granular-DQ conducts a multi-granularity analysis of local patches with further exploration of their information densities, achieving a distinctive patch-wise and layer-invariant dynamic quantization paradigm. Specifically, Granular-DQ initiates by developing a granularity-bit controller (GBC) to apprehend the coarse-to-fine granular representations of different patches, matching their proportional contribution to the entire image to determine the proper bit-width allocation. On this premise, we investigate the relation between bit-width and information density, devising an entropy-to-bit (E2B) mechanism that enables further fine-grained dynamic bit adaption of high-bit patches. Extensive experiments validate the superiority and generalization ability of Granular-DQ over recent state-of-the-art methods on various SR models. Code will be available at \url{