This study explores the mechanism of factual knowledge storage in pre-trained language models (PLMs). Previous research suggests that factual knowledge is stored within multi-layer perceptron weights, and some storage units exhibit degeneracy, referred to as Degenerate Knowledge Neurons (DKNs). This paper provides a comprehensive definition of DKNs that covers both structural and functional aspects, pioneering the study of structures in PLMs' factual knowledge storage units. Based on this, we introduce the Neurological Topology Clustering method, which allows the formation of DKNs in any numbers and structures, leading to a more accurate DKN acquisition. Furthermore, we introduce the Neuro-Degeneracy Analytic Analysis Framework, which uniquely integrates model robustness, evolvability, and complexity for a holistic assessment of PLMs. Within this framework, our execution of 34 experiments across 2 PLMs, 4 datasets, and 6 settings highlights the critical role of DKNs. The code will be available soon.